Source code for statsmodels.tsa.regime_switching.markov_regression

"""
Markov switching regression models

Author: Chad Fulton
License: BSD-3
"""
import numpy as np
import statsmodels.base.wrapper as wrap

from statsmodels.tsa.regime_switching import markov_switching


[docs] class MarkovRegression(markov_switching.MarkovSwitching): r""" First-order k-regime Markov switching regression model Parameters ---------- endog : array_like The endogenous variable. k_regimes : int The number of regimes. trend : {'n', 'c', 't', 'ct'} Whether or not to include a trend. To include an intercept, time trend, or both, set `trend='c'`, `trend='t'`, or `trend='ct'`. For no trend, set `trend='n'`. Default is an intercept. exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : int, optional The order of the model describes the dependence of the likelihood on previous regimes. This depends on the model in question and should be set appropriately by subclasses. exog_tvtp : array_like, optional Array of exogenous or lagged variables to use in calculating time-varying transition probabilities (TVTP). TVTP is only used if this variable is provided. If an intercept is desired, a column of ones must be explicitly included in this array. switching_trend : bool or iterable, optional If a boolean, sets whether or not all trend coefficients are switching across regimes. If an iterable, should be of length equal to the number of trend variables, where each element is a boolean describing whether the corresponding coefficient is switching. Default is True. switching_exog : bool or iterable, optional If a boolean, sets whether or not all regression coefficients are switching across regimes. If an iterable, should be of length equal to the number of exogenous variables, where each element is a boolean describing whether the corresponding coefficient is switching. Default is True. switching_variance : bool, optional Whether or not there is regime-specific heteroskedasticity, i.e. whether or not the error term has a switching variance. Default is False. Notes ----- This model is new and API stability is not guaranteed, although changes will be made in a backwards compatible way if possible. The model can be written as: .. math:: y_t = a_{S_t} + x_t' \beta_{S_t} + \varepsilon_t \\ \varepsilon_t \sim N(0, \sigma_{S_t}^2) i.e. the model is a dynamic linear regression where the coefficients and the variance of the error term may be switching across regimes. The `trend` is accommodated by prepending columns to the `exog` array. Thus if `trend='c'`, the passed `exog` array should not already have a column of ones. See the notebook `Markov switching dynamic regression <../examples/notebooks/generated/markov_regression.html>`__ for an overview. References ---------- Kim, Chang-Jin, and Charles R. Nelson. 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications". MIT Press Books. The MIT Press. """ def __init__(self, endog, k_regimes, trend='c', exog=None, order=0, exog_tvtp=None, switching_trend=True, switching_exog=True, switching_variance=False, dates=None, freq=None, missing='none'): # Properties from statsmodels.tools.validation import string_like self.trend = string_like(trend, "trend", options=("n", "c", "ct", "t")) self.switching_trend = switching_trend self.switching_exog = switching_exog self.switching_variance = switching_variance # Exogenous data self.k_exog, exog = markov_switching.prepare_exog(exog) # Trend nobs = len(endog) self.k_trend = 0 self._k_exog = self.k_exog trend_exog = None if trend == 'c': trend_exog = np.ones((nobs, 1)) self.k_trend = 1 elif trend == 't': trend_exog = (np.arange(nobs) + 1)[:, np.newaxis] self.k_trend = 1 elif trend == 'ct': trend_exog = np.c_[np.ones((nobs, 1)), (np.arange(nobs) + 1)[:, np.newaxis]] self.k_trend = 2 if trend_exog is not None: exog = trend_exog if exog is None else np.c_[trend_exog, exog] self._k_exog += self.k_trend # Initialize the base model super().__init__( endog, k_regimes, order=order, exog_tvtp=exog_tvtp, exog=exog, dates=dates, freq=freq, missing=missing) # Switching options if self.switching_trend is True or self.switching_trend is False: self.switching_trend = [self.switching_trend] * self.k_trend elif not len(self.switching_trend) == self.k_trend: raise ValueError('Invalid iterable passed to `switching_trend`.') if self.switching_exog is True or self.switching_exog is False: self.switching_exog = [self.switching_exog] * self.k_exog elif not len(self.switching_exog) == self.k_exog: raise ValueError('Invalid iterable passed to `switching_exog`.') self.switching_coeffs = ( np.r_[self.switching_trend, self.switching_exog].astype(bool).tolist()) # Parameters self.parameters['exog'] = self.switching_coeffs self.parameters['variance'] = [1] if self.switching_variance else [0]
[docs] def predict_conditional(self, params): """ In-sample prediction, conditional on the current regime Parameters ---------- params : array_like Array of parameters at which to perform prediction. Returns ------- predict : array_like Array of predictions conditional on current, and possibly past, regimes """ params = np.array(params, ndmin=1) # Since in the base model the values are the same across columns, we # only compute a single column, and then expand it below. predict = np.zeros((self.k_regimes, self.nobs), dtype=params.dtype) for i in range(self.k_regimes): # Predict if self._k_exog > 0: coeffs = params[self.parameters[i, 'exog']] predict[i] = np.dot(self.exog, coeffs) return predict[:, None, :]
def _resid(self, params): predict = np.repeat(self.predict_conditional(params), self.k_regimes, axis=1) return self.endog - predict def _conditional_loglikelihoods(self, params): """ Compute loglikelihoods conditional on the current period's regime """ # Get residuals resid = self._resid(params) # Compute the conditional likelihoods variance = params[self.parameters['variance']].squeeze() if self.switching_variance: variance = np.reshape(variance, (self.k_regimes, 1, 1)) conditional_loglikelihoods = ( -0.5 * resid**2 / variance - 0.5 * np.log(2 * np.pi * variance)) return conditional_loglikelihoods @property def _res_classes(self): return {'fit': (MarkovRegressionResults, MarkovRegressionResultsWrapper)} def _em_iteration(self, params0): """ EM iteration Notes ----- This uses the inherited _em_iteration method for computing the non-TVTP transition probabilities and then performs the EM step for regression coefficients and variances. """ # Inherited parameters result, params1 = super()._em_iteration(params0) tmp = np.sqrt(result.smoothed_marginal_probabilities) # Regression coefficients coeffs = None if self._k_exog > 0: coeffs = self._em_exog(result, self.endog, self.exog, self.parameters.switching['exog'], tmp) for i in range(self.k_regimes): params1[self.parameters[i, 'exog']] = coeffs[i] # Variances params1[self.parameters['variance']] = self._em_variance( result, self.endog, self.exog, coeffs, tmp) # params1[self.parameters['variance']] = 0.33282116 return result, params1 def _em_exog(self, result, endog, exog, switching, tmp=None): """ EM step for regression coefficients """ k_exog = exog.shape[1] coeffs = np.zeros((self.k_regimes, k_exog)) # First, estimate non-switching coefficients if not np.all(switching): nonswitching_exog = exog[:, ~switching] nonswitching_coeffs = ( np.dot(np.linalg.pinv(nonswitching_exog), endog)) coeffs[:, ~switching] = nonswitching_coeffs endog = endog - np.dot(nonswitching_exog, nonswitching_coeffs) # Next, get switching coefficients if np.any(switching): switching_exog = exog[:, switching] if tmp is None: tmp = np.sqrt(result.smoothed_marginal_probabilities) for i in range(self.k_regimes): tmp_endog = tmp[i] * endog tmp_exog = tmp[i][:, np.newaxis] * switching_exog coeffs[i, switching] = ( np.dot(np.linalg.pinv(tmp_exog), tmp_endog)) return coeffs def _em_variance(self, result, endog, exog, betas, tmp=None): """ EM step for variances """ k_exog = 0 if exog is None else exog.shape[1] if self.switching_variance: variance = np.zeros(self.k_regimes) for i in range(self.k_regimes): if k_exog > 0: resid = endog - np.dot(exog, betas[i]) else: resid = endog variance[i] = ( np.sum(resid**2 * result.smoothed_marginal_probabilities[i]) / np.sum(result.smoothed_marginal_probabilities[i])) else: variance = 0 if tmp is None: tmp = np.sqrt(result.smoothed_marginal_probabilities) for i in range(self.k_regimes): tmp_endog = tmp[i] * endog if k_exog > 0: tmp_exog = tmp[i][:, np.newaxis] * exog resid = tmp_endog - np.dot(tmp_exog, betas[i]) else: resid = tmp_endog variance += np.sum(resid**2) variance /= self.nobs return variance @property def start_params(self): """ (array) Starting parameters for maximum likelihood estimation. Notes ----- These are not very sophisticated and / or good. We set equal transition probabilities and interpolate regression coefficients between zero and the OLS estimates, where the interpolation is based on the regime number. We rely heavily on the EM algorithm to quickly find much better starting parameters, which are then used by the typical scoring approach. """ # Inherited parameters params = markov_switching.MarkovSwitching.start_params.fget(self) # Regression coefficients if self._k_exog > 0: beta = np.dot(np.linalg.pinv(self.exog), self.endog) variance = np.var(self.endog - np.dot(self.exog, beta)) if np.any(self.switching_coeffs): for i in range(self.k_regimes): params[self.parameters[i, 'exog']] = ( beta * (i / self.k_regimes)) else: params[self.parameters['exog']] = beta else: variance = np.var(self.endog) # Variances if self.switching_variance: params[self.parameters['variance']] = ( np.linspace(variance / 10., variance, num=self.k_regimes)) else: params[self.parameters['variance']] = variance return params @property def param_names(self): """ (list of str) List of human readable parameter names (for parameters actually included in the model). """ # Inherited parameters param_names = np.array( markov_switching.MarkovSwitching.param_names.fget(self), dtype=object) # Regression coefficients if np.any(self.switching_coeffs): for i in range(self.k_regimes): param_names[self.parameters[i, 'exog']] = [ '%s[%d]' % (exog_name, i) for exog_name in self.exog_names] else: param_names[self.parameters['exog']] = self.exog_names # Variances if self.switching_variance: for i in range(self.k_regimes): param_names[self.parameters[i, 'variance']] = 'sigma2[%d]' % i else: param_names[self.parameters['variance']] = 'sigma2' return param_names.tolist()
[docs] def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation Parameters ---------- unconstrained : array_like Array of unconstrained parameters used by the optimizer, to be transformed. Returns ------- constrained : array_like Array of constrained parameters which may be used in likelihood evaluation. """ # Inherited parameters constrained = super().transform_params( unconstrained) # Nothing to do for regression coefficients constrained[self.parameters['exog']] = ( unconstrained[self.parameters['exog']]) # Force variances to be positive constrained[self.parameters['variance']] = ( unconstrained[self.parameters['variance']]**2) return constrained
[docs] def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Parameters ---------- constrained : array_like Array of constrained parameters used in likelihood evaluation, to be transformed. Returns ------- unconstrained : array_like Array of unconstrained parameters used by the optimizer. """ # Inherited parameters unconstrained = super().untransform_params( constrained) # Nothing to do for regression coefficients unconstrained[self.parameters['exog']] = ( constrained[self.parameters['exog']]) # Force variances to be positive unconstrained[self.parameters['variance']] = ( constrained[self.parameters['variance']]**0.5) return unconstrained
class MarkovRegressionResults(markov_switching.MarkovSwitchingResults): r""" Class to hold results from fitting a Markov switching regression model Parameters ---------- model : MarkovRegression instance The fitted model instance params : ndarray Fitted parameters filter_results : HamiltonFilterResults or KimSmootherResults instance The underlying filter and, optionally, smoother output cov_type : str The type of covariance matrix estimator to use. Can be one of 'approx', 'opg', 'robust', or 'none'. Attributes ---------- model : Model instance A reference to the model that was fit. filter_results : HamiltonFilterResults or KimSmootherResults instance The underlying filter and, optionally, smoother output nobs : float The number of observations used to fit the model. params : ndarray The parameters of the model. scale : float This is currently set to 1.0 and not used by the model or its results. """ pass class MarkovRegressionResultsWrapper( markov_switching.MarkovSwitchingResultsWrapper): pass wrap.populate_wrapper(MarkovRegressionResultsWrapper, # noqa:E305 MarkovRegressionResults)

Last update: Apr 19, 2024