The Datasets Package

statsmodels provides data sets (i.e. data and meta-data) for use in examples, tutorials, model testing, etc.

Using Datasets from Stata

webuse(data[, baseurl, as_df])

Download and return an example dataset from Stata.

Using Datasets from R

The Rdatasets project gives access to the datasets available in R’s core datasets package and many other common R packages. All of these datasets are available to statsmodels by using the get_rdataset function. The actual data is accessible by the data attribute. For example:

In [1]: import statsmodels.api as sm

In [2]: duncan_prestige = sm.datasets.get_rdataset("Duncan", "carData")

In [3]: print(duncan_prestige.__doc__)
.. container::

   ====== ===============
   Duncan R Documentation
   ====== ===============

   .. rubric:: Duncan's Occupational Prestige Data
      :name: Duncan

   .. rubric:: Description
      :name: description

   The ``Duncan`` data frame has 45 rows and 4 columns. Data on the
   prestige and other characteristics of 45 U. S. occupations in 1950.

   .. rubric:: Usage
      :name: usage

   .. code:: R

      Duncan

   .. rubric:: Format
      :name: format

   This data frame contains the following columns:

   type
      Type of occupation. A factor with the following levels: ``prof``,
      professional and managerial; ``wc``, white-collar; ``bc``,
      blue-collar.

   income
      Percentage of occupational incumbents in the 1950 US Census who
      earned $3,500 or more per year (about $36,000 in 2017 US dollars).

   education
      Percentage of occupational incumbents in 1950 who were high school
      graduates (which, were we cynical, we would say is roughly
      equivalent to a PhD in 2017)

   prestige
      Percentage of respondents in a social survey who rated the
      occupation as “good” or better in prestige

   .. rubric:: Source
      :name: source

   Duncan, O. D. (1961) A socioeconomic index for all occupations. In
   Reiss, A. J., Jr. (Ed.) *Occupations and Social Status.* Free Press
   [Table VI-1].

   .. rubric:: References
      :name: references

   Fox, J. (2016) *Applied Regression Analysis and Generalized Linear
   Models*, Third Edition. Sage.

   Fox, J. and Weisberg, S. (2019) *An R Companion to Applied
   Regression*, Third Edition, Sage.


In [4]: duncan_prestige.data.head(5)
Out[4]: 
            type  income  education  prestige
rownames                                     
accountant  prof      62         86        82
pilot       prof      72         76        83
architect   prof      75         92        90
author      prof      55         90        76
chemist     prof      64         86        90

R Datasets Function Reference

get_rdataset(dataname[, package, cache])

download and return R dataset

get_data_home([data_home])

Return the path of the statsmodels data dir.

clear_data_home([data_home])

Delete all the content of the data home cache.

Available Datasets

Usage

Load a dataset:

In [5]: import statsmodels.api as sm

In [6]: data = sm.datasets.longley.load_pandas()

The Dataset object follows the bunch pattern. The full dataset is available in the data attribute.

In [7]: data.data
Out[7]: 
     TOTEMP  GNPDEFL       GNP   UNEMP   ARMED       POP    YEAR
0   60323.0     83.0  234289.0  2356.0  1590.0  107608.0  1947.0
1   61122.0     88.5  259426.0  2325.0  1456.0  108632.0  1948.0
2   60171.0     88.2  258054.0  3682.0  1616.0  109773.0  1949.0
3   61187.0     89.5  284599.0  3351.0  1650.0  110929.0  1950.0
4   63221.0     96.2  328975.0  2099.0  3099.0  112075.0  1951.0
5   63639.0     98.1  346999.0  1932.0  3594.0  113270.0  1952.0
6   64989.0     99.0  365385.0  1870.0  3547.0  115094.0  1953.0
7   63761.0    100.0  363112.0  3578.0  3350.0  116219.0  1954.0
8   66019.0    101.2  397469.0  2904.0  3048.0  117388.0  1955.0
9   67857.0    104.6  419180.0  2822.0  2857.0  118734.0  1956.0
10  68169.0    108.4  442769.0  2936.0  2798.0  120445.0  1957.0
11  66513.0    110.8  444546.0  4681.0  2637.0  121950.0  1958.0
12  68655.0    112.6  482704.0  3813.0  2552.0  123366.0  1959.0
13  69564.0    114.2  502601.0  3931.0  2514.0  125368.0  1960.0
14  69331.0    115.7  518173.0  4806.0  2572.0  127852.0  1961.0
15  70551.0    116.9  554894.0  4007.0  2827.0  130081.0  1962.0

Most datasets hold convenient representations of the data in the attributes endog and exog:

In [8]: data.endog.iloc[:5]
Out[8]: 
0    60323.0
1    61122.0
2    60171.0
3    61187.0
4    63221.0
Name: TOTEMP, dtype: float64

In [9]: data.exog.iloc[:5,:]
Out[9]: 
   GNPDEFL       GNP   UNEMP   ARMED       POP    YEAR
0     83.0  234289.0  2356.0  1590.0  107608.0  1947.0
1     88.5  259426.0  2325.0  1456.0  108632.0  1948.0
2     88.2  258054.0  3682.0  1616.0  109773.0  1949.0
3     89.5  284599.0  3351.0  1650.0  110929.0  1950.0
4     96.2  328975.0  2099.0  3099.0  112075.0  1951.0

Univariate datasets, however, do not have an exog attribute.

Variable names can be obtained by typing:

In [10]: data.endog_name
Out[10]: 'TOTEMP'

In [11]: data.exog_name
Out[11]: ['GNPDEFL', 'GNP', 'UNEMP', 'ARMED', 'POP', 'YEAR']

If the dataset does not have a clear interpretation of what should be an endog and exog, then you can always access the data or raw_data attributes. This is the case for the macrodata dataset, which is a collection of US macroeconomic data rather than a dataset with a specific example in mind. The data attribute contains a record array of the full dataset and the raw_data attribute contains an ndarray with the names of the columns given by the names attribute.

In [12]: type(data.data)
Out[12]: pandas.core.frame.DataFrame

In [13]: type(data.raw_data)
Out[13]: pandas.core.frame.DataFrame

In [14]: data.names
Out[14]: ['TOTEMP', 'GNPDEFL', 'GNP', 'UNEMP', 'ARMED', 'POP', 'YEAR']

Loading data as pandas objects

For many users it may be preferable to get the datasets as a pandas DataFrame or Series object. Each of the dataset modules is equipped with a load_pandas method which returns a Dataset instance with the data readily available as pandas objects:

In [15]: data = sm.datasets.longley.load_pandas()

In [16]: data.exog
Out[16]: 
    GNPDEFL       GNP   UNEMP   ARMED       POP    YEAR
0      83.0  234289.0  2356.0  1590.0  107608.0  1947.0
1      88.5  259426.0  2325.0  1456.0  108632.0  1948.0
2      88.2  258054.0  3682.0  1616.0  109773.0  1949.0
3      89.5  284599.0  3351.0  1650.0  110929.0  1950.0
4      96.2  328975.0  2099.0  3099.0  112075.0  1951.0
5      98.1  346999.0  1932.0  3594.0  113270.0  1952.0
6      99.0  365385.0  1870.0  3547.0  115094.0  1953.0
7     100.0  363112.0  3578.0  3350.0  116219.0  1954.0
8     101.2  397469.0  2904.0  3048.0  117388.0  1955.0
9     104.6  419180.0  2822.0  2857.0  118734.0  1956.0
10    108.4  442769.0  2936.0  2798.0  120445.0  1957.0
11    110.8  444546.0  4681.0  2637.0  121950.0  1958.0
12    112.6  482704.0  3813.0  2552.0  123366.0  1959.0
13    114.2  502601.0  3931.0  2514.0  125368.0  1960.0
14    115.7  518173.0  4806.0  2572.0  127852.0  1961.0
15    116.9  554894.0  4007.0  2827.0  130081.0  1962.0

In [17]: data.endog
Out[17]: 
0     60323.0
1     61122.0
2     60171.0
3     61187.0
4     63221.0
5     63639.0
6     64989.0
7     63761.0
8     66019.0
9     67857.0
10    68169.0
11    66513.0
12    68655.0
13    69564.0
14    69331.0
15    70551.0
Name: TOTEMP, dtype: float64

The full DataFrame is available in the data attribute of the Dataset object

In [18]: data.data
Out[18]: 
     TOTEMP  GNPDEFL       GNP   UNEMP   ARMED       POP    YEAR
0   60323.0     83.0  234289.0  2356.0  1590.0  107608.0  1947.0
1   61122.0     88.5  259426.0  2325.0  1456.0  108632.0  1948.0
2   60171.0     88.2  258054.0  3682.0  1616.0  109773.0  1949.0
3   61187.0     89.5  284599.0  3351.0  1650.0  110929.0  1950.0
4   63221.0     96.2  328975.0  2099.0  3099.0  112075.0  1951.0
5   63639.0     98.1  346999.0  1932.0  3594.0  113270.0  1952.0
6   64989.0     99.0  365385.0  1870.0  3547.0  115094.0  1953.0
7   63761.0    100.0  363112.0  3578.0  3350.0  116219.0  1954.0
8   66019.0    101.2  397469.0  2904.0  3048.0  117388.0  1955.0
9   67857.0    104.6  419180.0  2822.0  2857.0  118734.0  1956.0
10  68169.0    108.4  442769.0  2936.0  2798.0  120445.0  1957.0
11  66513.0    110.8  444546.0  4681.0  2637.0  121950.0  1958.0
12  68655.0    112.6  482704.0  3813.0  2552.0  123366.0  1959.0
13  69564.0    114.2  502601.0  3931.0  2514.0  125368.0  1960.0
14  69331.0    115.7  518173.0  4806.0  2572.0  127852.0  1961.0
15  70551.0    116.9  554894.0  4007.0  2827.0  130081.0  1962.0

With pandas integration in the estimation classes, the metadata will be attached to model results:

In [19]: y, x = data.endog, data.exog

In [20]: res = sm.OLS(y, x).fit()

In [21]: res.params
Out[21]: 
GNPDEFL   -52.993570
GNP         0.071073
UNEMP      -0.423466
ARMED      -0.572569
POP        -0.414204
YEAR       48.417866
dtype: float64

In [22]: res.summary()
Out[22]: 
<class 'statsmodels.iolib.summary.Summary'>
"""
                                 OLS Regression Results                                
=======================================================================================
Dep. Variable:                 TOTEMP   R-squared (uncentered):                   1.000
Model:                            OLS   Adj. R-squared (uncentered):              1.000
Method:                 Least Squares   F-statistic:                          5.052e+04
Date:                Mon, 18 Mar 2024   Prob (F-statistic):                    8.20e-22
Time:                        09:29:15   Log-Likelihood:                         -117.56
No. Observations:                  16   AIC:                                      247.1
Df Residuals:                      10   BIC:                                      251.8
Df Model:                           6                                                  
Covariance Type:            nonrobust                                                  
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
GNPDEFL      -52.9936    129.545     -0.409      0.691    -341.638     235.650
GNP            0.0711      0.030      2.356      0.040       0.004       0.138
UNEMP         -0.4235      0.418     -1.014      0.335      -1.354       0.507
ARMED         -0.5726      0.279     -2.052      0.067      -1.194       0.049
POP           -0.4142      0.321     -1.289      0.226      -1.130       0.302
YEAR          48.4179     17.689      2.737      0.021       9.003      87.832
==============================================================================
Omnibus:                        1.443   Durbin-Watson:                   1.277
Prob(Omnibus):                  0.486   Jarque-Bera (JB):                0.605
Skew:                           0.476   Prob(JB):                        0.739
Kurtosis:                       3.031   Cond. No.                     4.56e+05
==============================================================================

Notes:
[1] R² is computed without centering (uncentered) since the model does not contain a constant.
[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[3] The condition number is large, 4.56e+05. This might indicate that there are
strong multicollinearity or other numerical problems.
"""

Extra Information

If you want to know more about the dataset itself, you can access the following, again using the Longley dataset as an example

>>> dir(sm.datasets.longley)[:6]
['COPYRIGHT', 'DESCRLONG', 'DESCRSHORT', 'NOTE', 'SOURCE', 'TITLE']

Additional information

  • The idea for a datasets package was originally proposed by David Cournapeau.

  • To add datasets, see the notes on adding a dataset.


Last update: Mar 18, 2024