DynamicFactor.update(params, transformed=True, complex_step=False)[source]

Update the parameters of the model

Updates the representation matrices to fill in the new parameter values.


params : array_like

Array of new parameters.

transformed : boolean, optional

Whether or not params is already transformed. If set to False, transform_params is called. Default is True..


params : array_like

Array of parameters.


Let n = k_endog, m = k_factors, and p = factor_order. Then the params vector has length [n       imes m] + [n] + [m^2    imes p]. It is expanded in the following way:

  • The first n    imes m parameters fill out the factor loading matrix, starting from the [0,0] entry and then proceeding along rows. These parameters are not modified in transform_params.
  • The next n parameters provide variances for the error_cov errors in the observation equation. They fill in the diagonal of the observation covariance matrix, and are constrained to be positive by transofrm_params.
  • The next m^2   imes p parameters are used to create the p coefficient matrices for the vector autoregression describing the factor transition. They are transformed in transform_params to enforce stationarity of the VAR(p). They are placed so as to make the transition matrix a companion matrix for the VAR. In particular, we assume that the first m^2 parameters fill the first coefficient matrix (starting at [0,0] and filling along rows), the second m^2 parameters fill the second matrix, etc.