statsmodels.tsa.statespace.mlemodel.MLEResults

class statsmodels.tsa.statespace.mlemodel.MLEResults(model, params, results, cov_type='opg', cov_kwds=None, **kwargs)[source]

Class to hold results from fitting a state space model.

Parameters
  • model (MLEModel instance) – The fitted model instance

  • params (array) – Fitted parameters

  • filter_results (KalmanFilter instance) – The underlying state space model and Kalman filter output

model

A reference to the model that was fit.

Type

Model instance

filter_results

The underlying state space model and Kalman filter output

Type

KalmanFilter instance

nobs

The number of observations used to fit the model.

Type

float

params

The parameters of the model.

Type

array

scale

This is currently set to 1.0 unless the model uses concentrated filtering.

Type

float

Methods

aic()

(float) Akaike Information Criterion

bic()

(float) Bayes Information Criterion

bse()

conf_int([alpha, cols, method])

Returns the confidence interval of the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, …])

Returns the variance/covariance matrix.

cov_params_approx()

(array) The variance / covariance matrix.

cov_params_oim()

(array) The variance / covariance matrix.

cov_params_opg()

(array) The variance / covariance matrix.

cov_params_robust()

(array) The QMLE variance / covariance matrix.

cov_params_robust_approx()

(array) The QMLE variance / covariance matrix.

cov_params_robust_oim()

(array) The QMLE variance / covariance matrix.

f_test(r_matrix[, cov_p, scale, invcov])

Compute the F-test for a joint linear hypothesis.

fittedvalues()

(array) The predicted values of the model.

forecast([steps])

Out-of-sample forecasts

get_forecast([steps])

Out-of-sample forecasts

get_prediction([start, end, dynamic, index])

In-sample prediction and out-of-sample forecasting

hqic()

(float) Hannan-Quinn Information Criterion

impulse_responses([steps, impulse, …])

Impulse response function

info_criteria(criteria[, method])

Information criteria

initialize(model, params, **kwd)

llf()

(float) The value of the log-likelihood function evaluated at params.

llf_obs()

(float) The value of the log-likelihood function evaluated at params.

load(fname)

load a pickle, (class method)

loglikelihood_burn()

(float) The number of observations during which the likelihood is not evaluated.

normalized_cov_params()

plot_diagnostics([variable, lags, fig, figsize])

Diagnostic plots for standardized residuals of one endogenous variable

predict([start, end, dynamic])

In-sample prediction and out-of-sample forecasting

pvalues()

(array) The p-values associated with the z-statistics of the coefficients.

remove_data()

remove data arrays, all nobs arrays from result and model

resid()

(array) The model residuals.

save(fname[, remove_data])

save a pickle of this instance

simulate(nsimulations[, measurement_shocks, …])

Simulate a new time series following the state space model

summary([alpha, start, title, model_name, …])

Summarize the Model

t_test(r_matrix[, cov_p, scale, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q

t_test_pairwise(term_name[, method, alpha, …])

perform pairwise t_test with multiple testing corrected p-values

test_heteroskedasticity(method[, …])

Test for heteroskedasticity of standardized residuals

test_normality(method)

Test for normality of standardized residuals.

test_serial_correlation(method[, lags])

Ljung-box test for no serial correlation of standardized residuals

tvalues()

Return the t-statistic for a given parameter estimate.

wald_test(r_matrix[, cov_p, scale, invcov, …])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, …])

Compute a sequence of Wald tests for terms over multiple columns

zvalues()

(array) The z-statistics for the coefficients.

Attributes

use_t