statsmodels.discrete.discrete_model.BinaryResults.cov_params¶
-
BinaryResults.cov_params(r_matrix=
None, column=None, scale=None, cov_p=None, other=None)¶ Compute the variance/covariance matrix.
The variance/covariance matrix can be of a linear contrast of the estimated parameters or all params multiplied by scale which will usually be an estimate of sigma^2. Scale is assumed to be a scalar.
- Parameters:¶
- r_matrix : array_like¶
Can be 1d, or 2d. Can be used alone or with other.
- column : array_like, optional¶
Must be used on its own. Can be 0d or 1d see below.
- scale : float, optional¶
Can be specified or not. Default is None, which means that the scale argument is taken from the model.
- cov_p : ndarray, optional¶
The covariance of the parameters. If not provided, this value is read from self.normalized_cov_params or self.cov_params_default.
- other : array_like, optional¶
Can be used when r_matrix is specified.
- Returns:¶
The covariance matrix of the parameter estimates or of linear combination of parameter estimates. See Notes.
- Return type:¶
ndarray
Notes
(The below are assumed to be in matrix notation.)
If no argument is specified returns the covariance matrix of a model
(scale)*(X.T X)^(-1)If contrast is specified it pre and post-multiplies as follows
(scale) * r_matrix (X.T X)^(-1) r_matrix.TIf contrast and other are specified returns
(scale) * r_matrix (X.T X)^(-1) other.TIf column is specified returns
(scale) * (X.T X)^(-1)[column,column]if column is 0dOR
(scale) * (X.T X)^(-1)[column][:,column]if column is 1d