statsmodels.discrete.discrete_model.GeneralizedPoisson.predict¶
-
GeneralizedPoisson.predict(params, exog=
None, exposure=None, offset=None, which='mean', y_values=None)[source]¶ Predict response variable of a model given exogenous variables.
- Parameters:¶
- params : array_like¶
2d array of fitted parameters of the model. Should be in the order returned from the model.
- exog : array_like, optional¶
1d or 2d array of exogenous values. If not supplied, then the exog attribute of the model is used. If a 1d array is given it assumed to be 1 row of exogenous variables. If you only have one regressor and would like to do prediction, you must provide a 2d array with shape[1] == 1.
- offset : array_like, optional¶
Offset is added to the linear predictor with coefficient equal to 1. Default is zero if exog is not None, and the model offset if exog is None.
- exposure : array_like, optional¶
Log(exposure) is added to the linear prediction with coefficient equal to 1. Default is one if exog is is not None, and is the model exposure if exog is None.
- which : 'mean', 'linear', 'var', 'prob' (optional)¶
Statitistic to predict. Default is ‘mean’.
’mean’ returns the conditional expectation of endog E(y | x), i.e. exp of linear predictor.
’linear’ returns the linear predictor of the mean function.
’var’ returns the estimated variance of endog implied by the model.
’prob’ return probabilities for counts from 0 to max(endog) or for y_values if those are provided.
- linear : bool
The
linear` keyword is deprecated and will be removed, use ``whichkeyword instead. If True, returns the linear predicted values. If False or None, then the statistic specified bywhichwill be returned.- y_values : array_like¶
Values of the random variable endog at which pmf is evaluated. Only used if
which="prob"