statsmodels.genmod.generalized_estimating_equations.GEEResults

class statsmodels.genmod.generalized_estimating_equations.GEEResults(model, params, cov_params, scale, cov_type='robust', use_t=False, regularized=False, **kwds)[source]

This class summarizes the fit of a marginal regression model using GEE.

cov_params_default

default covariance of the parameter estimates. Is chosen among one of the following three based on cov_type

Type:

ndarray

cov_robust

covariance of the parameter estimates that is robust

Type:

ndarray

cov_naive

covariance of the parameter estimates that is not robust to correlation or variance misspecification

Type:

ndarray

cov_robust_bc

covariance of the parameter estimates that is robust and bias reduced

Type:

ndarray

converged

indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold

Type:

bool

cov_type

string indicating whether a “robust”, “naive” or “bias_reduced” covariance is used as default

Type:

str

fit_history

Contains information about the iterations.

Type:

dict

fittedvalues

Linear predicted values for the fitted model. dot(exog, params)

Type:

ndarray

model

Pointer to GEE model instance that called fit.

Type:

class instance

normalized_cov_params

See GEE docstring

Type:

ndarray

params

The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data.

Type:

ndarray

scale

The estimate of the scale / dispersion for the model fit. See GEE.fit for more information.

Type:

float

score_norm

norm of the score at the end of the iterative estimation.

Type:

float

bse

The standard errors of the fitted GEE parameters.

Type:

ndarray

Methods

conf_int([alpha, cols, cov_type])

Returns confidence intervals for the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, ...])

Compute the variance/covariance matrix.

f_test(r_matrix[, cov_p, invcov])

Compute the F-test for a joint linear hypothesis.

get_distribution([exog, exposure, offset, ...])

Return a instance of the predictive distribution.

get_hat_matrix_diag([observed])

Compute the diagonal of the hat matrix

get_influence([observed])

Get an instance of GLMInfluence with influence and outlier measures

get_margeff([at, method, atexog, dummy, count])

Get marginal effects of the fitted model.

get_prediction([exog, exposure, offset, ...])

Compute prediction results for GLM compatible models.

info_criteria(crit[, scale, dk_params])

Return an information criterion for the model.

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

llf_scaled([scale])

Return the log-likelihood at the given scale, using the estimated scale if the provided scale is None.

load(fname)

Load a pickled results instance

normalized_cov_params()

See specific model class docstring

params_sensitivity(dep_params_first, ...)

Refits the GEE model using a sequence of values for the dependence parameters.

plot_added_variable(focus_exog[, ...])

Create an added variable plot for a fitted regression model.

plot_ceres_residuals(focus_exog[, frac, ...])

Conditional Expectation Partial Residuals (CERES) plot.

plot_isotropic_dependence([ax, xpoints, min_n])

Create a plot of the pairwise products of within-group residuals against the corresponding time differences.

plot_partial_residuals(focus_exog[, ax])

Create a partial residual, or 'component plus residual' plot for a fitted regression model.

predict([exog, transform])

Call self.model.predict with self.params as the first argument.

pseudo_rsquared([kind])

Pseudo R-squared

qic([scale, n_step])

Returns the QIC and QICu information criteria.

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

score_test()

Return the results of a score test for a linear constraint.

sensitivity_params(dep_params_first, ...)

Refits the GEE model using a sequence of values for the dependence parameters.

standard_errors([cov_type])

This is a convenience function that returns the standard errors for any covariance type.

summary([yname, xname, title, alpha])

Summarize the GEE regression results

summary2([yname, xname, title, alpha, ...])

Experimental summary for regression Results

t_test(r_matrix[, cov_p, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q.

t_test_pairwise(term_name[, method, alpha, ...])

Perform pairwise t_test with multiple testing corrected p-values.

wald_test(r_matrix[, cov_p, invcov, use_f, ...])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, ...])

Compute a sequence of Wald tests for terms over multiple columns.

Properties

aic

Akaike Information Criterion -2 * llf + 2 * (df_model + 1)

bic

Bayes Information Criterion

bic_deviance

Bayes Information Criterion

bic_llf

Bayes Information Criterion

bse

centered_resid

Returns the residuals centered within each group.

deviance

See statsmodels.families.family for the distribution-specific deviance functions.

fittedvalues

The estimated mean response.

llf

Value of the loglikelihood function evalued at params.

llnull

Log-likelihood of the model fit with a constant as the only regressor

mu

See GLM docstring.

null

Fitted values of the null model

null_deviance

The value of the deviance function for the model fit with a constant as the only regressor.

pearson_chi2

Pearson's Chi-Squared statistic is defined as the sum of the squares of the Pearson residuals.

pvalues

The two-tailed p values for the t-stats of the params.

resid

The response residuals.

resid_anscombe

Anscombe residuals.

resid_anscombe_scaled

Scaled Anscombe residuals.

resid_anscombe_unscaled

Unscaled Anscombe residuals.

resid_centered

Returns the residuals centered within each group.

resid_centered_split

Returns the residuals centered within each group.

resid_deviance

Deviance residuals.

resid_pearson

Pearson residuals.

resid_response

Response residuals.

resid_split

Returns the residuals, the endogeneous data minus the fitted values from the model.

resid_working

Working residuals.

split_centered_resid

Returns the residuals centered within each group.

split_resid

Returns the residuals, the endogeneous data minus the fitted values from the model.

tvalues

Return the t-statistic for a given parameter estimate.

use_t

Flag indicating to use the Student's distribution in inference.