statsmodels.genmod.generalized_linear_model.GLM.get_distribution¶
-
GLM.get_distribution(params, scale=
None, exog=None, exposure=None, offset=None, var_weights=1.0, n_trials=1.0)[source]¶ Return a instance of the predictive distribution.
- Parameters:¶
- params : array_like¶
The model parameters.
- scale : scalar¶
The scale parameter.
- exog : array_like¶
The predictor variable matrix.
- offset : array_like or None¶
Offset variable for predicted mean.
- exposure : array_like or None¶
Log(exposure) will be added to the linear prediction.
- var_weights : array_like¶
1d array of variance (analytic) weights. The default is None.
- n_trials : int¶
Number of trials for the binomial distribution. The default is 1 which corresponds to a Bernoulli random variable.
- Returns:¶
Instance of a scipy frozen distribution based on estimated parameters. Use the
rvsmethod to generate random values.- Return type:¶
gen
Notes
Due to the behavior of
scipy.stats.distributions objects, the returned random number generator must be called withgen.rvs(n)wherenis the number of observations in the data set used to fit the model. If any other value is used forn, misleading results will be produced.