statsmodels.nonparametric.kernel_regression.KernelCensoredReg¶
-
class statsmodels.nonparametric.kernel_regression.KernelCensoredReg(endog, exog, var_type, reg_type, bw=
'cv_ls', ckertype='gaussian', ukertype='aitchison_aitken_reg', okertype='wangryzin_reg', censor_val=0, defaults=None)[source]¶ Nonparametric censored regression.
Calculates the conditional mean
E[y|X]wherey = g(X) + e, where y is left-censored. Left censored variable Y is defined asY = min {Y', L}whereLis the value at whichYis censored andY'is the true value of the variable.- Parameters:¶
- endog : list with one element which is array_like¶
This is the dependent variable.
- exog : list¶
The training data for the independent variable(s) Each element in the list is a separate variable
- dep_type : str
The type of the dependent variable(s) c: Continuous u: Unordered (Discrete) o: Ordered (Discrete)
- reg_type : str¶
Type of regression estimator lc: Local Constant Estimator ll: Local Linear Estimator
- bw : array_like¶
Either a user-specified bandwidth or the method for bandwidth selection. cv_ls: cross-validation least squares aic: AIC Hurvich Estimator
- ckertype : str, optional¶
The kernel used for the continuous variables.
- okertype : str, optional¶
The kernel used for the ordered discrete variables.
- ukertype : str, optional¶
The kernel used for the unordered discrete variables.
- censor_val : float¶
Value at which the dependent variable is censored
- defaults : EstimatorSettings instance, optional¶
The default values for the efficient bandwidth estimation
Methods
aic_hurvich(bw[, func])Computes the AIC Hurvich criteria for the estimation of the bandwidth.
censored(censor_val)cv_loo(bw, func)The cross-validation function with leave-one-out estimator
fit([data_predict])Returns the marginal effects at the data_predict points.
Returns the R-Squared for the nonparametric regression.
sig_test(var_pos[, nboot, nested_res, pivot])Significance test for the variables in the regression.