statsmodels.stats.weightstats.ztost¶
-
statsmodels.stats.weightstats.ztost(x1, low, upp, x2=
None, usevar='pooled', ddof=1.0)[source]¶ Equivalence test based on normal distribution
- Parameters:¶
- x1 : array_like or None¶
one sample or first sample for 2 independent samples
- low : float¶
equivalence interval low < m1 - m2 < upp
- upp : float¶
equivalence interval low < m1 - m2 < upp
- x1¶
second sample for 2 independent samples test. If None, then a one-sample test is performed.
- usevar : str, 'pooled'¶
If pooled, then the standard deviation of the samples is assumed to be the same. Only pooled is currently implemented.
- Returns:¶
pvalue (float) – pvalue of the non-equivalence test
t1, pv1 (tuple of floats) – test statistic and pvalue for lower threshold test
t2, pv2 (tuple of floats) – test statistic and pvalue for upper threshold test
Notes
checked only for 1 sample case