Ordinary Least Squares ======================== .. _ols_notebook: `Link to Notebook GitHub `_ .. raw:: html
In [ ]:
from __future__ import print_function
   import numpy as np
   import statsmodels.api as sm
   import matplotlib.pyplot as plt
   from statsmodels.sandbox.regression.predstd import wls_prediction_std
   
   np.random.seed(9876789)
   

OLS estimation

Artificial data:

In [ ]:
nsample = 100
   x = np.linspace(0, 10, 100)
   X = np.column_stack((x, x**2))
   beta = np.array([1, 0.1, 10])
   e = np.random.normal(size=nsample)
   

Our model needs an intercept so we add a column of 1s:

In [ ]:
X = sm.add_constant(X)
   y = np.dot(X, beta) + e
   

Fit and summary:

In [ ]:
model = sm.OLS(y, X)
   results = model.fit()
   print(results.summary())
   

Quantities of interest can be extracted directly from the fitted model. Type dir(results) for a full list. Here are some examples:

In [ ]:
print('Parameters: ', results.params)
   print('R2: ', results.rsquared)
   
                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       1.000
   Model:                            OLS   Adj. R-squared:                  1.000
   Method:                 Least Squares   F-statistic:                 4.020e+06
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):          2.83e-239
   Time:                        17:44:10   Log-Likelihood:                -146.51
   No. Observations:                 100   AIC:                             299.0
   Df Residuals:                      97   BIC:                             306.8
   Df Model:                           2                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P>|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   const          1.3423      0.313      4.292      0.000         0.722     1.963
   x1            -0.0402      0.145     -0.278      0.781        -0.327     0.247
   x2            10.0103      0.014    715.745      0.000         9.982    10.038
   ==============================================================================
   Omnibus:                        2.042   Durbin-Watson:                   2.274
   Prob(Omnibus):                  0.360   Jarque-Bera (JB):                1.875
   Skew:                           0.234   Prob(JB):                        0.392
   Kurtosis:                       2.519   Cond. No.                         144.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   

OLS non-linear curve but linear in parameters

We simulate artificial data with a non-linear relationship between x and y:

In [ ]:
nsample = 50
   sig = 0.5
   x = np.linspace(0, 20, nsample)
   X = np.column_stack((x, np.sin(x), (x-5)**2, np.ones(nsample)))
   beta = [0.5, 0.5, -0.02, 5.]
   
   y_true = np.dot(X, beta)
   y = y_true + sig * np.random.normal(size=nsample)
   
Parameters:  [  1.34233516  -0.04024948  10.01025357]
   R2:  0.999987936503
   

Fit and summary:

In [ ]:
res = sm.OLS(y, X).fit()
   print(res.summary())
   

Extract other quantities of interest:

In [ ]:
print('Parameters: ', res.params)
   print('Standard errors: ', res.bse)
   print('Predicted values: ', res.predict())
   
                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       0.933
   Model:                            OLS   Adj. R-squared:                  0.928
   Method:                 Least Squares   F-statistic:                     211.8
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           6.30e-27
   Time:                        17:44:10   Log-Likelihood:                -34.438
   No. Observations:                  50   AIC:                             76.88
   Df Residuals:                      46   BIC:                             84.52
   Df Model:                           3                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P>|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   x1             0.4687      0.026     17.751      0.000         0.416     0.522
   x2             0.4836      0.104      4.659      0.000         0.275     0.693
   x3            -0.0174      0.002     -7.507      0.000        -0.022    -0.013
   const          5.2058      0.171     30.405      0.000         4.861     5.550
   ==============================================================================
   Omnibus:                        0.655   Durbin-Watson:                   2.896
   Prob(Omnibus):                  0.721   Jarque-Bera (JB):                0.360
   Skew:                           0.207   Prob(JB):                        0.835
   Kurtosis:                       3.026   Cond. No.                         221.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   

Draw a plot to compare the true relationship to OLS predictions. Confidence intervals around the predictions are built using the wls_prediction_std command.

In [ ]:
prstd, iv_l, iv_u = wls_prediction_std(res)
   
   fig, ax = plt.subplots(figsize=(8,6))
   
   ax.plot(x, y, 'o', label="data")
   ax.plot(x, y_true, 'b-', label="True")
   ax.plot(x, res.fittedvalues, 'r--.', label="OLS")
   ax.plot(x, iv_u, 'r--')
   ax.plot(x, iv_l, 'r--')
   ax.legend(loc='best');
   
Parameters:  [ 0.46872448  0.48360119 -0.01740479  5.20584496]
   Standard errors:  [ 0.02640602  0.10380518  0.00231847  0.17121765]
   Predicted values:  [  4.77072516   5.22213464   5.63620761   5.98658823   6.25643234
      6.44117491   6.54928009   6.60085051   6.62432454   6.6518039
      6.71377946   6.83412169   7.02615877   7.29048685   7.61487206
      7.97626054   8.34456611   8.68761335   8.97642389   9.18997755
      9.31866582   9.36587056   9.34740836   9.28893189   9.22171529
      9.17751587   9.1833565    9.25708583   9.40444579   9.61812821
      9.87897556  10.15912843  10.42660281  10.65054491  10.8063004
     10.87946503  10.86825119  10.78378163  10.64826203  10.49133265
     10.34519853  10.23933827  10.19566084  10.22490593  10.32487947
     10.48081414  10.66779556  10.85485568  11.01006072  11.10575781]
   

OLS with dummy variables

We generate some artificial data. There are 3 groups which will be modelled using dummy variables. Group 0 is the omitted/benchmark category.

In [ ]:
nsample = 50
   groups = np.zeros(nsample, int)
   groups[20:40] = 1
   groups[40:] = 2
   #dummy = (groups[:,None] == np.unique(groups)).astype(float)
   
   dummy = sm.categorical(groups, drop=True)
   x = np.linspace(0, 20, nsample)
   # drop reference category
   X = np.column_stack((x, dummy[:,1:]))
   X = sm.add_constant(X, prepend=False)
   
   beta = [1., 3, -3, 10]
   y_true = np.dot(X, beta)
   e = np.random.normal(size=nsample)
   y = y_true + e
   

Inspect the data:

In [ ]:
print(X[:5,:])
   print(y[:5])
   print(groups)
   print(dummy[:5,:])
   

Fit and summary:

In [ ]:
res2 = sm.OLS(y, X).fit()
   print(res.summary())
   
[[ 0.          0.          0.          1.        ]
    [ 0.40816327  0.          0.          1.        ]
    [ 0.81632653  0.          0.          1.        ]
    [ 1.2244898   0.          0.          1.        ]
    [ 1.63265306  0.          0.          1.        ]]
   [  9.28223335  10.50481865  11.84389206  10.38508408  12.37941998]
   [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    1 1 1 2 2 2 2 2 2 2 2 2 2]
   [[ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]
    [ 1.  0.  0.]]
   

Draw a plot to compare the true relationship to OLS predictions:

In [ ]:
prstd, iv_l, iv_u = wls_prediction_std(res2)
   
   fig, ax = plt.subplots(figsize=(8,6))
   
   ax.plot(x, y, 'o', label="Data")
   ax.plot(x, y_true, 'b-', label="True")
   ax.plot(x, res2.fittedvalues, 'r--.', label="Predicted")
   ax.plot(x, iv_u, 'r--')
   ax.plot(x, iv_l, 'r--')
   legend = ax.legend(loc="best")
   
                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                      y   R-squared:                       0.933
   Model:                            OLS   Adj. R-squared:                  0.928
   Method:                 Least Squares   F-statistic:                     211.8
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           6.30e-27
   Time:                        17:44:10   Log-Likelihood:                -34.438
   No. Observations:                  50   AIC:                             76.88
   Df Residuals:                      46   BIC:                             84.52
   Df Model:                           3                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P>|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   x1             0.4687      0.026     17.751      0.000         0.416     0.522
   x2             0.4836      0.104      4.659      0.000         0.275     0.693
   x3            -0.0174      0.002     -7.507      0.000        -0.022    -0.013
   const          5.2058      0.171     30.405      0.000         4.861     5.550
   ==============================================================================
   Omnibus:                        0.655   Durbin-Watson:                   2.896
   Prob(Omnibus):                  0.721   Jarque-Bera (JB):                0.360
   Skew:                           0.207   Prob(JB):                        0.835
   Kurtosis:                       3.026   Cond. No.                         221.
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   

Joint hypothesis test

F test

We want to test the hypothesis that both coefficients on the dummy variables are equal to zero, that is, $R \times \beta = 0$. An F test leads us to strongly reject the null hypothesis of identical constant in the 3 groups:

In [ ]:
R = [[0, 1, 0, 0], [0, 0, 1, 0]]
   print(np.array(R))
   print(res2.f_test(R))
   

You can also use formula-like syntax to test hypotheses

In [ ]:
print(res2.f_test("x2 = x3 = 0"))
   
[[0 1 0 0]
    [0 0 1 0]]
   <F test: F=array([[ 145.49268198]]), p=1.2834419617281833e-20, df_denom=46, df_num=2>
   

Small group effects

If we generate artificial data with smaller group effects, the T test can no longer reject the Null hypothesis:

In [ ]:
beta = [1., 0.3, -0.0, 10]
   y_true = np.dot(X, beta)
   y = y_true + np.random.normal(size=nsample)
   
   res3 = sm.OLS(y, X).fit()
   
<F test: F=array([[ 145.49268198]]), p=1.2834419617282074e-20, df_denom=46, df_num=2>
   
In [ ]:
print(res3.f_test(R))
   
In [ ]:
print(res3.f_test("x2 = x3 = 0"))
   
<F test: F=array([[ 1.22491119]]), p=0.30318644106311987, df_denom=46, df_num=2>
   

Multicollinearity

The Longley dataset is well known to have high multicollinearity. That is, the exogenous predictors are highly correlated. This is problematic because it can affect the stability of our coefficient estimates as we make minor changes to model specification.

In [ ]:
from statsmodels.datasets.longley import load_pandas
   y = load_pandas().endog
   X = load_pandas().exog
   X = sm.add_constant(X)
   
<F test: F=array([[ 1.22491119]]), p=0.30318644106311987, df_denom=46, df_num=2>
   

Fit and summary:

In [ ]:
ols_model = sm.OLS(y, X)
   ols_results = ols_model.fit()
   print(ols_results.summary())
   

Condition number

One way to assess multicollinearity is to compute the condition number. Values over 20 are worrisome (see Greene 4.9). The first step is to normalize the independent variables to have unit length:

In [ ]:
norm_x = X.values
   for i, name in enumerate(X):
       if name == "const":
           continue
       norm_x[:,i] = X[name]/np.linalg.norm(X[name])
   norm_xtx = np.dot(norm_x.T,norm_x)
   
                            OLS Regression Results                            
   ==============================================================================
   Dep. Variable:                 TOTEMP   R-squared:                       0.995
   Model:                            OLS   Adj. R-squared:                  0.992
   Method:                 Least Squares   F-statistic:                     330.3
   Date:                Mon, 20 Jul 2015   Prob (F-statistic):           4.98e-10
   Time:                        17:44:10   Log-Likelihood:                -109.62
   No. Observations:                  16   AIC:                             233.2
   Df Residuals:                       9   BIC:                             238.6
   Df Model:                           6                                         
   Covariance Type:            nonrobust                                         
   ==============================================================================
                    coef    std err          t      P>|t|      [95.0% Conf. Int.]
   ------------------------------------------------------------------------------
   const      -3.482e+06    8.9e+05     -3.911      0.004      -5.5e+06 -1.47e+06
   GNPDEFL       15.0619     84.915      0.177      0.863      -177.029   207.153
   GNP           -0.0358      0.033     -1.070      0.313        -0.112     0.040
   UNEMP         -2.0202      0.488     -4.136      0.003        -3.125    -0.915
   ARMED         -1.0332      0.214     -4.822      0.001        -1.518    -0.549
   POP           -0.0511      0.226     -0.226      0.826        -0.563     0.460
   YEAR        1829.1515    455.478      4.016      0.003       798.788  2859.515
   ==============================================================================
   Omnibus:                        0.749   Durbin-Watson:                   2.559
   Prob(Omnibus):                  0.688   Jarque-Bera (JB):                0.684
   Skew:                           0.420   Prob(JB):                        0.710
   Kurtosis:                       2.434   Cond. No.                     4.86e+09
   ==============================================================================
   
   Warnings:
   [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
   [2] The condition number is large, 4.86e+09. This might indicate that there are
   strong multicollinearity or other numerical problems.
   
/Users/tom.augspurger/Envs/py3/lib/python3.4/site-packages/scipy/stats/stats.py:1233: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=16
     int(n))
   

Then, we take the square root of the ratio of the biggest to the smallest eigen values.

In [ ]:
eigs = np.linalg.eigvals(norm_xtx)
   condition_number = np.sqrt(eigs.max() / eigs.min())
   print(condition_number)
   

Dropping an observation

Greene also points out that dropping a single observation can have a dramatic effect on the coefficient estimates:

In [ ]:
ols_results2 = sm.OLS(y.ix[:14], X.ix[:14]).fit()
   print("Percentage change %4.2f%%\n"*7 % tuple([i for i in (ols_results2.params - ols_results.params)/ols_results.params*100]))
   
56240.8707446
   

We can also look at formal statistics for this such as the DFBETAS -- a standardized measure of how much each coefficient changes when that observation is left out.

In [ ]:
infl = ols_results.get_influence()
   
Percentage change -13.35%
   Percentage change -236.18%
   Percentage change -23.69%
   Percentage change -3.36%
   Percentage change -7.26%
   Percentage change -200.46%
   Percentage change -13.34%
   
   

In general we may consider DBETAS in absolute value greater than $2/\sqrt{N}$ to be influential observations

In [ ]:
2./len(X)**.5
   
In [ ]:
print(infl.summary_frame().filter(regex="dfb"))