{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Generalized Linear Models" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:23.925399Z", "iopub.status.busy": "2022-05-09T08:26:23.925005Z", "iopub.status.idle": "2022-05-09T08:26:24.698051Z", "shell.execute_reply": "2022-05-09T08:26:24.697538Z" } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:24.702705Z", "iopub.status.busy": "2022-05-09T08:26:24.701702Z", "iopub.status.idle": "2022-05-09T08:26:25.549440Z", "shell.execute_reply": "2022-05-09T08:26:25.548894Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import statsmodels.api as sm\n", "from scipy import stats\n", "from matplotlib import pyplot as plt\n", "\n", "plt.rc(\"figure\", figsize=(16,8))\n", "plt.rc(\"font\", size=14)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GLM: Binomial response data\n", "\n", "### Load Star98 data\n", "\n", " In this example, we use the Star98 dataset which was taken with permission\n", " from Jeff Gill (2000) Generalized linear models: A unified approach. Codebook\n", " information can be obtained by typing: " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.554078Z", "iopub.status.busy": "2022-05-09T08:26:25.553063Z", "iopub.status.idle": "2022-05-09T08:26:25.558906Z", "shell.execute_reply": "2022-05-09T08:26:25.558488Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "::\n", "\n", " Number of Observations - 303 (counties in California).\n", "\n", " Number of Variables - 13 and 8 interaction terms.\n", "\n", " Definition of variables names::\n", "\n", " NABOVE - Total number of students above the national median for the\n", " math section.\n", " NBELOW - Total number of students below the national median for the\n", " math section.\n", " LOWINC - Percentage of low income students\n", " PERASIAN - Percentage of Asian student\n", " PERBLACK - Percentage of black students\n", " PERHISP - Percentage of Hispanic students\n", " PERMINTE - Percentage of minority teachers\n", " AVYRSEXP - Sum of teachers' years in educational service divided by the\n", " number of teachers.\n", " AVSALK - Total salary budget including benefits divided by the number\n", " of full-time teachers (in thousands)\n", " PERSPENK - Per-pupil spending (in thousands)\n", " PTRATIO - Pupil-teacher ratio.\n", " PCTAF - Percentage of students taking UC/CSU prep courses\n", " PCTCHRT - Percentage of charter schools\n", " PCTYRRND - Percentage of year-round schools\n", "\n", " The below variables are interaction terms of the variables defined\n", " above.\n", "\n", " PERMINTE_AVYRSEXP\n", " PEMINTE_AVSAL\n", " AVYRSEXP_AVSAL\n", " PERSPEN_PTRATIO\n", " PERSPEN_PCTAF\n", " PTRATIO_PCTAF\n", " PERMINTE_AVTRSEXP_AVSAL\n", " PERSPEN_PTRATIO_PCTAF\n", "\n" ] } ], "source": [ "print(sm.datasets.star98.NOTE)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load the data and add a constant to the exogenous (independent) variables:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.562596Z", "iopub.status.busy": "2022-05-09T08:26:25.561668Z", "iopub.status.idle": "2022-05-09T08:26:25.577329Z", "shell.execute_reply": "2022-05-09T08:26:25.576901Z" } }, "outputs": [], "source": [ "data = sm.datasets.star98.load()\n", "data.exog = sm.add_constant(data.exog, prepend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " The dependent variable is N by 2 (Success: NABOVE, Failure: NBELOW): " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.581016Z", "iopub.status.busy": "2022-05-09T08:26:25.580051Z", "iopub.status.idle": "2022-05-09T08:26:25.587333Z", "shell.execute_reply": "2022-05-09T08:26:25.586920Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " NABOVE NBELOW\n", "0 452.0 355.0\n", "1 144.0 40.0\n", "2 337.0 234.0\n", "3 395.0 178.0\n", "4 8.0 57.0\n" ] } ], "source": [ "print(data.endog.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " The independent variables include all the other variables described above, as\n", " well as the interaction terms:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.590957Z", "iopub.status.busy": "2022-05-09T08:26:25.590029Z", "iopub.status.idle": "2022-05-09T08:26:25.602316Z", "shell.execute_reply": "2022-05-09T08:26:25.601901Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " LOWINC PERASIAN PERBLACK PERHISP PERMINTE AVYRSEXP AVSALK \\\n", "0 34.39730 23.299300 14.235280 11.411120 15.91837 14.70646 59.15732 \n", "1 17.36507 29.328380 8.234897 9.314884 13.63636 16.08324 59.50397 \n", "2 32.64324 9.226386 42.406310 13.543720 28.83436 14.59559 60.56992 \n", "3 11.90953 13.883090 3.796973 11.443110 11.11111 14.38939 58.33411 \n", "4 36.88889 12.187500 76.875000 7.604167 43.58974 13.90568 63.15364 \n", "\n", " PERSPENK PTRATIO PCTAF ... PCTYRRND PERMINTE_AVYRSEXP \\\n", "0 4.445207 21.71025 57.03276 ... 22.222220 234.102872 \n", "1 5.267598 20.44278 64.62264 ... 0.000000 219.316851 \n", "2 5.482922 18.95419 53.94191 ... 0.000000 420.854496 \n", "3 4.165093 21.63539 49.06103 ... 7.142857 159.882095 \n", "4 4.324902 18.77984 52.38095 ... 0.000000 606.144976 \n", "\n", " PERMINTE_AVSAL AVYRSEXP_AVSAL PERSPEN_PTRATIO PERSPEN_PCTAF \\\n", "0 941.68811 869.9948 96.50656 253.52242 \n", "1 811.41756 957.0166 107.68435 340.40609 \n", "2 1746.49488 884.0537 103.92435 295.75929 \n", "3 648.15671 839.3923 90.11341 204.34375 \n", "4 2752.85075 878.1943 81.22097 226.54248 \n", "\n", " PTRATIO_PCTAF PERMINTE_AVYRSEXP_AVSAL PERSPEN_PTRATIO_PCTAF const \n", "0 1238.1955 13848.8985 5504.0352 1.0 \n", "1 1321.0664 13050.2233 6958.8468 1.0 \n", "2 1022.4252 25491.1232 5605.8777 1.0 \n", "3 1061.4545 9326.5797 4421.0568 1.0 \n", "4 983.7059 38280.2616 4254.4314 1.0 \n", "\n", "[5 rows x 21 columns]\n" ] } ], "source": [ "print(data.exog.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit and summary" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.605965Z", "iopub.status.busy": "2022-05-09T08:26:25.605029Z", "iopub.status.idle": "2022-05-09T08:26:25.624588Z", "shell.execute_reply": "2022-05-09T08:26:25.624144Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "================================================================================\n", "Dep. Variable: ['NABOVE', 'NBELOW'] No. Observations: 303\n", "Model: GLM Df Residuals: 282\n", "Model Family: Binomial Df Model: 20\n", "Link Function: Logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -2998.6\n", "Date: Mon, 09 May 2022 Deviance: 4078.8\n", "Time: 08:26:25 Pearson chi2: 4.05e+03\n", "No. Iterations: 5 Pseudo R-squ. (CS): 1.000\n", "Covariance Type: nonrobust \n", "===========================================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------------------\n", "LOWINC -0.0168 0.000 -38.749 0.000 -0.018 -0.016\n", "PERASIAN 0.0099 0.001 16.505 0.000 0.009 0.011\n", "PERBLACK -0.0187 0.001 -25.182 0.000 -0.020 -0.017\n", "PERHISP -0.0142 0.000 -32.818 0.000 -0.015 -0.013\n", "PERMINTE 0.2545 0.030 8.498 0.000 0.196 0.313\n", "AVYRSEXP 0.2407 0.057 4.212 0.000 0.129 0.353\n", "AVSALK 0.0804 0.014 5.775 0.000 0.053 0.108\n", "PERSPENK -1.9522 0.317 -6.162 0.000 -2.573 -1.331\n", "PTRATIO -0.3341 0.061 -5.453 0.000 -0.454 -0.214\n", "PCTAF -0.1690 0.033 -5.169 0.000 -0.233 -0.105\n", "PCTCHRT 0.0049 0.001 3.921 0.000 0.002 0.007\n", "PCTYRRND -0.0036 0.000 -15.878 0.000 -0.004 -0.003\n", "PERMINTE_AVYRSEXP -0.0141 0.002 -7.391 0.000 -0.018 -0.010\n", "PERMINTE_AVSAL -0.0040 0.000 -8.450 0.000 -0.005 -0.003\n", "AVYRSEXP_AVSAL -0.0039 0.001 -4.059 0.000 -0.006 -0.002\n", "PERSPEN_PTRATIO 0.0917 0.015 6.321 0.000 0.063 0.120\n", "PERSPEN_PCTAF 0.0490 0.007 6.574 0.000 0.034 0.064\n", "PTRATIO_PCTAF 0.0080 0.001 5.362 0.000 0.005 0.011\n", "PERMINTE_AVYRSEXP_AVSAL 0.0002 2.99e-05 7.428 0.000 0.000 0.000\n", "PERSPEN_PTRATIO_PCTAF -0.0022 0.000 -6.445 0.000 -0.003 -0.002\n", "const 2.9589 1.547 1.913 0.056 -0.073 5.990\n", "===========================================================================================\n" ] } ], "source": [ "glm_binom = sm.GLM(data.endog, data.exog, family=sm.families.Binomial())\n", "res = glm_binom.fit()\n", "print(res.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quantities of interest" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.628265Z", "iopub.status.busy": "2022-05-09T08:26:25.627328Z", "iopub.status.idle": "2022-05-09T08:26:25.634954Z", "shell.execute_reply": "2022-05-09T08:26:25.634539Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total number of trials: 108418.0\n", "Parameters: LOWINC -0.016815\n", "PERASIAN 0.009925\n", "PERBLACK -0.018724\n", "PERHISP -0.014239\n", "PERMINTE 0.254487\n", "AVYRSEXP 0.240694\n", "AVSALK 0.080409\n", "PERSPENK -1.952161\n", "PTRATIO -0.334086\n", "PCTAF -0.169022\n", "PCTCHRT 0.004917\n", "PCTYRRND -0.003580\n", "PERMINTE_AVYRSEXP -0.014077\n", "PERMINTE_AVSAL -0.004005\n", "AVYRSEXP_AVSAL -0.003906\n", "PERSPEN_PTRATIO 0.091714\n", "PERSPEN_PCTAF 0.048990\n", "PTRATIO_PCTAF 0.008041\n", "PERMINTE_AVYRSEXP_AVSAL 0.000222\n", "PERSPEN_PTRATIO_PCTAF -0.002249\n", "const 2.958878\n", "dtype: float64\n", "T-values: LOWINC -38.749083\n", "PERASIAN 16.504736\n", "PERBLACK -25.182189\n", "PERHISP -32.817913\n", "PERMINTE 8.498271\n", "AVYRSEXP 4.212479\n", "AVSALK 5.774998\n", "PERSPENK -6.161911\n", "PTRATIO -5.453217\n", "PCTAF -5.168654\n", "PCTCHRT 3.921200\n", "PCTYRRND -15.878260\n", "PERMINTE_AVYRSEXP -7.390931\n", "PERMINTE_AVSAL -8.449639\n", "AVYRSEXP_AVSAL -4.059162\n", "PERSPEN_PTRATIO 6.321099\n", "PERSPEN_PCTAF 6.574347\n", "PTRATIO_PCTAF 5.362290\n", "PERMINTE_AVYRSEXP_AVSAL 7.428064\n", "PERSPEN_PTRATIO_PCTAF -6.445137\n", "const 1.913012\n", "dtype: float64\n" ] } ], "source": [ "print('Total number of trials:', data.endog.iloc[:, 0].sum())\n", "print('Parameters: ', res.params)\n", "print('T-values: ', res.tvalues)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First differences: We hold all explanatory variables constant at their means and manipulate the percentage of low income households to assess its impact on the response variables: " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.638719Z", "iopub.status.busy": "2022-05-09T08:26:25.637743Z", "iopub.status.idle": "2022-05-09T08:26:25.645000Z", "shell.execute_reply": "2022-05-09T08:26:25.644579Z" } }, "outputs": [], "source": [ "means = data.exog.mean(axis=0)\n", "means25 = means.copy()\n", "means25.iloc[0] = stats.scoreatpercentile(data.exog.iloc[:,0], 25)\n", "means75 = means.copy()\n", "means75.iloc[0] = lowinc_75per = stats.scoreatpercentile(data.exog.iloc[:,0], 75)\n", "resp_25 = res.predict(means25)\n", "resp_75 = res.predict(means75)\n", "diff = resp_75 - resp_25" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The interquartile first difference for the percentage of low income households in a school district is:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.648640Z", "iopub.status.busy": "2022-05-09T08:26:25.647670Z", "iopub.status.idle": "2022-05-09T08:26:25.653284Z", "shell.execute_reply": "2022-05-09T08:26:25.652653Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-11.8753%\n" ] } ], "source": [ "print(\"%2.4f%%\" % (diff*100))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plots\n", "\n", " We extract information that will be used to draw some interesting plots: " ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.655772Z", "iopub.status.busy": "2022-05-09T08:26:25.655596Z", "iopub.status.idle": "2022-05-09T08:26:25.660342Z", "shell.execute_reply": "2022-05-09T08:26:25.659755Z" } }, "outputs": [], "source": [ "nobs = res.nobs\n", "y = data.endog.iloc[:,0]/data.endog.sum(1)\n", "yhat = res.mu" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot yhat vs y:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.662728Z", "iopub.status.busy": "2022-05-09T08:26:25.662562Z", "iopub.status.idle": "2022-05-09T08:26:25.666318Z", "shell.execute_reply": "2022-05-09T08:26:25.665790Z" } }, "outputs": [], "source": [ "from statsmodels.graphics.api import abline_plot" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.668722Z", "iopub.status.busy": "2022-05-09T08:26:25.668557Z", "iopub.status.idle": "2022-05-09T08:26:25.837607Z", "shell.execute_reply": "2022-05-09T08:26:25.836964Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8AAAAH8CAYAAAAe8cZkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACEnklEQVR4nO3deXxU9b3/8dc3e1jDvgRCoiiIoCBRlGjdi0qtiFrXqnh7e1t7e29rS4v39lbb2gstvb1d7u2vt72XoLjUDWmVKtpiWxk2AxF33DIJDPsStuzJ9/fHJJCEmcnMZM7MmZn38/HgATlzls85ZybM53y/38/XWGsRERERERERSXUZiQ5AREREREREJB6UAIuIiIiIiEhaUAIsIiIiIiIiaUEJsIiIiIiIiKQFJcAiIiIiIiKSFpQAi4iIiIiISFpQAiwiIhInxhhrjHkwiu2K27e9OwYx/MUY85fe7ifMY3mNMUvjcSwREZFwKAEWEZG0Yoy5uz2ZtMaYi4Ks81H763+Jc3i91uncuv85GmT9PsaYB40xl/TiGIfaE+vZMTqHiGMSEREJR1aiAxAREUmQBuA24LXOC40x5wOntr+erFYD5d2WNbf//eluy/sAD7T/+y9RHMMAJcC9wPPGmNnW2hcjivZk0cYkIiISkhJgERFJV38EbjLG/JO1trnT8tuA94HWxIQVEx9aax8N9IK1tsmJYxhjngPeBL4G9DYBFhERcYS6QIuISLp6AhgMzOpYYIzJBG4GHg+0QXvX3MXGmBpjTKMx5kNjzAJjTEa39XKNMf9pjNlrjDlijPmDMWZMkH2OMsb8rzFmV/s+3zPGfDl2p3nS8Y6PATbGFAN72196oFOX5qWR7tda+xawD39rcKjjDzXG/Kb9fBuMMW8bY/6+0+sxi0lERKQ7tQCLiEi62o6/+/NtwAvty64AhuNPgG/uvLIxxgArgCuBJcAm4HJgIVAMfKnT6v8L3NG+n7XAJcDK7gEYY4YD64FM4FfAnvZ9/soYM8Ra+1CU55ZnjBnabdlRa233bt17gS8D/w94DljevvzjSA9ojBkEDAI+CrFOHvAqMBH47/bjzAF+036+i2IZk4iISHdqARYRkXT2OHCdMaZv+8+3AxustYGSrWvxJ78PWmv/zlr7K2vtDcBS4B+MMZMBjDFn409+/5+19nZr7X9ba28CtgTY50NALjDNWvt9a+2v29f9X+BfjDEFUZ7XXfgTyc5/vtB9JWvtMeCZ9h/ftNY+2v5nXRjHyGtvzR1mjDkXeBp/Iv90iG2+CEwGvmCt/Zq19pf4xyT/GXiwPQnuTUwiIiIhKQEWEZF09jSQDcwxxuTjb418LMi6s4E24Ofdlv9Hp9cBrmn/+7+6rfeLzj+0tyjfiL9l2LYnk0PbW25fBvKBGRGdzQkv4E/WO/9ZEeW+gulIsvcAG4HzgR8APwuxzez2bY6PHbbWtrZvk4u/BV5ERMQx6gItIiJpy1p7wBizCn/Lbwv+6sNPBll9HLDbWlvbbflW/Ilxcaf1LCd3Bf6g28/D8HcZvqf9TyDDQ59BUD5r7Z+i3DZcL+B/GNAG7AKqrLX1PWwzDvioPent7L32v4tjGqGIiEg3SoBFRCTdPQ48AgwA/mSt3ROn43b0wnoC/5jiQN6JUyzRiEeSLSIiElNKgEVEJN39HmgEyvB36w2mGrjSGDPQWnuo0/LT8Sez3k7rGWA88G639TrbCxwBshKcSNo4HqsamGaMyezWCjyx/W9vAmISEZE0ojHAIiKS1qy1dfirDn8Pf9XhYF7A///mP3Vbfl/73x1VnjvmwP3Hbut9tdtxW/EXe5rTXjirC2PMsB6Dj4269r8HxeFYL+Dv+n1bx4L2KaT+Gf9DiI4HAfGMSURE0ohagEVEJO1Za5eFsdoLwCvA94wx44DNwGXADcD/WGvfbt/XG8aYJ4AvG2MGAh7gUk5uAQZYgH+KpHXGmN/i7/I8CJgKXA/k9eK0wmKtrTfGvAPcYoz5ANiPfzzvBgcO91v8laD/zxgzDfgEf+Gxy4H7rbX7ExCTiIikESXAIiIiYbDWWmPM9fhbim8B7gRqgH8Bftxt9Xvwd3G+HbgOWI2/AvK2bvvcY4yZAfwb/kTwy8AB/EWhvuHUuQTwd/irVP8H/mrMDwMxTzattQ3GmEvxz518O1CAv1jYF621v01ETCIikl6MtRpmIyIiIiIiIqlPY4BFREREREQkLSgBFhERERERkbSgBFhERERERETSghJgERERERERSQtKgEVERERERCQtpOw0SEOHDrXFxcWJDkNEREREREQcsGnTpn3W2mGRbJOyCXBxcTEVFRWJDkNEREREREQcYIypjnQbdYEWERERERGRtKAEWERERERERNKCEmARERERERFJC0qARUREREREJC0oARYREREREZG0oARYRERERERE0oISYBEREREREUkLSoBFREREREQkLSgBFhERERERkbSgBFhERERERETSghJgERERERERSQtKgEVERERERCQtKAEWERERERGRtKAEWERERERERNKCEmARERERERFJC1mJDkBERERERETiY0Wlj8WrtrKjtp7RBfnMnzWBOdMKEx1W3CgBFhERERERSQMrKn3cv/wt6ptbAfDV1nP/8rcA0iYJVhdoERERERGRNLB41dbjyW+H+uZWFq/amqCI4k8JsIiIiIiISBrYUVsf0fJUpARYREREREQkDYwuyI9oeSpSAiwiIiIiIpIG5s+aQH52Zpdl+dmZzJ81IUERxZ+KYImIiIiIiKSBjkJXqgItIiIiIiIiKW/OtMK0Sni7UxdoERERERERSQtKgEVERERERCQtKAEWERERERGRtKAEWERERERERNKCEmARERERERFJC0qARUREREREJC0oARYREREREZG0oARYRERERERE0oISYBEREREREUkLSoBFREREREQkLWQlOgARERERERFJrBWVPhav2sqO2noK+mRjLRyqb2Z0QT7zZ01gzrTCRIcYE0qARURERERE0tiKSh/3L3+L+uZWAA7WNR9/zVdbz/3L3wJwTRLc0NzKH7bsiGpbJcAiIiIiIiJpbPGqrceT30Dqm1tZvGprwhPgPYcbWLa+msc31LD/WFNU+1ACLCIiIiIiksZ21NbHZB2nbNlWS7mnipVv7aSlzXL5xBHcU1ZM2Y8i35cSYBERERER6TIGNNXGfUYimuuQ7NdudEE+vh4S3NEF+XGKxq+ltY2X3tlFucfLpuqD9MvN4vPnF3PXzHGMG9I36v0qARYRERERSXPdx4C6cdxnPERzHVLh2s2fNaHLOXSXn53J/FkT4hJLbV0TT2zcxrJ1XnYcamDckD48cO0kbpw+hv552b3evxJgEREREZE0F2gMqFvGfcZTNNchFa5dR5yJrAL94e4jlK/1snzzdhqa2ygbP4TvXzeZSycOJzPDxOw4SoBFRERERNJcsPGdiRz3mQjRXIdUuXZzphXGPWFva7P89YO9LPFU8dqH+8jNyuD6aYXcXVbMxJEDHDmmEmARERERkTQXbAxovMd9Jlo010HXLnLHGlt4dvN2lnq8fLLvGCMG5DJ/1gRuPa+IwX1zHD12hqN7FxERERER15s/awL52ZldlsVz3KdbRHMddO3Ct+1AHQ+98C7nL/wz3/39OwzIz+YXt05jzbcv4yuXjnc8+QW1AIuIiIiIpL3uY0CTsZJxLERzHXTtQrPWsqHqAOWeKl55dzcZxnDNlFHMKytmWtGguMdjrLVxP2g8lJaW2oqKikSHISIiIiIiknYamlt5fssOyj1e3t15mEF9srltRhGfP7+YkQPzYnIMY8wma21pJNuoBVhERERERERiYs+RBh5dX8Nj66vZf6yJCSP6s2juFOZMKySvW1fxRFACLCIiIiIiIr3y1vZDLPFU8cKbO2hps1w+cTj3lJVwwalDMCZ20xj1lhJgERERERERiVhLaxsvv7ubJWuqqKg+SL/cLG6fMY67ZxZTPLRvosMLSAmwiIiIiIiIhK22ronfvb6NZeuq8dXWUzS4D9/9zCRuKh1D/7zsRIcXkhJgERERERER6dFHe45Q7vGyfLOP+uZWZp46hAc/eyaXTRxOZoZ7ujmHogRYREREREREAmprs/z1w72Ue7z87YO95GRlcP3UQu4uK+aMUQMSHV7ElACLiIiIiIhIF8caW1i+eTvla718svcYIwbk8s1Pn86t5xUxpF9uosOLmhJgERERERERAWDbgToeWefld69v40hDC2ePLeDnt0zl6smjyMnKSHR4vaYEWEREREREJI1Za3nde5Ala6p4+d1dGGO4evJI7rmwhHOKBiU6vJhSAiwiIiIiIpKGGltaeX7LTso9Vbyz4zAFfbL50sWn8vkLxjFqYH6iw3OEEmAREREREZE0sudIA4+tr+GxDdXsO9rE6SP6sXDuFOZMLSQ/JzPR4TlKCbCIiIiIiEgaeNt3iCWeKl7YspOm1jYunziceWUllI0fgjHJMY1RbykBFhERERERSVEtrW288u5ulniqeN17kL45mdw2o4i7ZhZTMrRvosOLOyXAIiIiIiIiKeZQXTNPVtTw8NpqfLX1jB2cz3dmn8Hnzh3LgLzsRIeXMEqARUREREREUsRHe46ydG0Vz27yUd/cyvmnDOaBaydx+RkjyMxIj27OoSgBFhERERGRpLKi0sfiVVvZUVvP6IJ85s+awJxphYkOq9eiPa+2NsvfPtxLucfLXz/YS05WBnOmjubumSVMGj0gDpEnDyXAIiIiIiKSNFZU+rh/+VvUN7cC4Kut5/7lbwEkdRIczXnVNbXw7GYfSz1VfLz3GMP75/KNK0/nthlFDOmXG7fYk4kSYBERERERSRqLV209niR2qG9uZfGqrUmdAEdyXtsP1rFsXTVPbKzhcEMLZ40ZyM9unso1U0aRk5URz7CTjhJgERERERFJGjtq6yNanix6Oi9rLRXVB1mypopV7+zCGMNVk0dyT1kx5xQNSptpjHpLCbCIiIiIiCSN0QX5+AIki6ML8hMQTewEO69RA/N4dtN2ytdW8bbvMAPzs/nip07lzgvGJf05J4Lax0VEREREJGnMnzWB/OzMLsvyszOZP2tCgiKKjUDnlZVhONLYwjee3kJjcxv/fv0U1t9/OQuunqjkN0pqARYRERERkaTRMR421apAd8T/w5XvsfdoIwAtbZZziwczr6yYC8cPVTfnGFACLCIiIiIiSWXOtMKkT3g7a22zvPLuLh7fWMPeo430ycnkpuljuGtmMacM65fo8FKKEmAREREREZEEOFTfzFOvb2PpWi++2nrGDMrnO7PP4KbSsQzMz050eClJCbCIiIiIiHSxotKXcl2M3eTjvUdZ6vHy7Obt1DW1MqNkMP/2mUlcOWkEmRnq5uwkJcAiIiIiIikgVknrikof9y9/6/ictL7aeu5f/haAkuBesNby2of7WOKp4i9b95KTmcFnp45mXlkxZ44emOjw0oYSYBERERGRJBfLpHXxqq3H99OhvrmVxau2KgGOQl1TC8s3+1i61stHe44yrH8u9115OrfNKGJov9xEh5d2lACLiIiIiCS5WCatOwLMRRtquQTmq63nkXVefrdxG4fqm5lSOJD/vPlsZk8ZTU6WZqNNlLgnwMaYe4H5wCjgHeBr1trXQqx/G/At4HTgMPAn4JvW2l1xCFdERERExPVimbSOLsjHF2A7zTvbM2stm6oPUu7x8tI7/nTlqjNHMq+smOnjBmkaIxeIawJsjLkZ+DlwL7Cm/e8XjTGTrLU1AdYvA5YB3wRWACOAXwGPAZfHKWwREREREVeLZdI6f9aELt2pAfKzM5k/a0KvYkxlTS1trHxrB0vWeHnLd4iB+dl84aIS7rygmEI9OHCVeLcA3wcstdb+tv3nrxpjrgK+DNwfYP0LgO3W2v9s/7nKGPNL4JfOhyoiIiIikhximbR2dJlWFeie7TvayGPra3h0QzV7jzQyfng/HpozmbnnFNInR6NN3Shud8UYkwNMB37S7aWXgZlBNvMA/26MuRZ4ARgC3AL80ak4RURERESSTayT1jnTCpXwhvDOjkOUe7z84Y0dNLW2ccmEYdxTVsJFpw1VN2eXi+djiaFAJrC72/LdwBWBNrDWrjPG3IK/y3M+/nhfAe4KtL4x5ovAFwGKiopiE7WIiIiISBJQ0uqs1jbLK+/uptxTxYaqA/TJyeTmc8dyd1kxpw7rl+jwJEyubpc3xkzC3935B8Aq/IWzFgP/A9zZfX1r7W+A3wCUlpba+EUqIiIiIiKp6HBDM0+9vo2la71sP1hPYUE+/3rNGXzu3LEMzM9OdHgSoXgmwPuAVvyFrDobAQSr6Hw/sNFau7j95zeNMceA14wx/2Kt3e5MqCIiIiIiJ6yo9GlMbJr5ZO9RHl7r5elN26lrauW8ksF8Z/YZXHHGCLIyNY1RsopbAmytbTLGbAKuBJ7u9NKVwLNBNuuDP2nurONnvetERERExHErKn1dCkz5auu5f/lbAEqCU4y1ljUf7WPJmipe3bqXnMwMrj17NPPKiplcODDR4UkMxLsL9E+BZcaYjfgLXH0JGA38GsAY8wiAtbaje/PzwG+NMV/mRBfonwGbA02bJCIiIiISa4tXbe1SXRmgvrmVxau2KgFOEfVNrSyv3M5Sj5cP9xxlaL9cvnbFadw+YxzD+ucmOjyJobgmwNbaJ40xQ4Dv4E9m3wausdZWt69S1G39pcaY/sA/Av8BHAJWA9+OX9QiIiIiks52BJhfN9TyVJZqXcF31NbzyLpqfvd6DbV1zUwuHMBPP3c2s88aRW5WZqLDEwfEvQiWtfZXwK+CvHZJgGWa91dEREREEmZ0QT6+AMnu6IL8BETTVTwT0lTpCm6tZXPNQZZ4vLz09i6stcw6cyT3XFhC6bhBmsYoxbm6CrSIiIiISKLNnzWhS+IHkJ+dyfxZExIYVfwT0mTvCt7U0sYf39pJuaeKLdsPMSAviy9cWMLnLxjHmEF9Eh2exIkSYBERERGREDqSO7d1/Y13QpqsXcH3H23k8Q01LFtfzZ4jjZw6rC8/mDOZG84ppE+O0qF0ozsuIiIiItKDOdMKE57wdhfvhNTNXcEDeXfHYco9Vfx+yw6aWtq4+PRh/PjGYj512jAyMtTNOV0pARYRERERSULxTkjd2hW8s9Y2y5/e2025p4r1nxwgPzuTz5WO4e6ZJYwf3i/R4YkLKAEWEREREUelWuXgeAt2/eKdkLq1KzjA4YZmnnp9Gw+v87LtQD2FBfn8yzUTubm0iIF9shMdnriIEmARERERcUyqVA5OlHCuXzwTUrd1Ba/ad4yH13p5umIbx5paObd4EP9y9RlcOWkEWZkZiQ5PXEgJsIiIiIg4JtkrBydaT9fPbQlpPFhr8Xy0n3JPFau37iErw3Dt2aO5p6yEyYUDEx2euJwSYBERERFxTLJWDnYLXb8T6ptaWfGGj3JPFR/sPsrQfjn802Wncfv5RQzvn5fo8CRJKAEWEREREcckW+Vgt9H1g52H6lm2rprHN9ZQW9fMmaMH8JObzubas0eRm5WZ6PAkySgBFhERERHHJKpycDSFt3raJhHFvJKh8rJTNtccZMmaKl58exfWWj49aSTzyoo5r2QwxmgaI4mOEmARERERcUwiCjVFU3irp20SVczLzZWXndDU0saLb+9kicfLlm219M/L4p6yYu68oJixg/skOjxJAcZam+gYHFFaWmorKioSHYaIiIiIxFnZotUBuw0XFuTjWXBZVNtEs08J3/6jjTyxsYZl66vZfbiRU4b2ZV5ZMXPPGUPfXLXZSWDGmE3W2tJIttG7SURERERSSjSFo3raRsWonPH+rsOUr/Hy3Bs+mlra+NTpw1h0QzEXnzaMjAx1c5bYUwIsIiIiaS8RYzvFOdEUjuppm1QtRhXL9364+2pts6x+fw/lnirWfryf/OxMbpo+hnllxYwf3r+3pyQSkhJgERERSWuJGtsp4Ys0SYumcFRP26RiMapYvvfD2deRhmaertjO0rVeag7UMXpgHguunsgt546loE9OrE5LJCQlwCIiIpLWFq/a2iWpAahvbmXxqq1KgF0gmiQtmsJRPW2TisWoYvneD7WvqWMLWLrWyzObtnO0sYXScYP49lUTmXXmCLIyM3p9HiKRUAIsIiIiaU1jO90t2iRtzrTCiJO4nraJZp9uFsv3frBtfLX1XPoffyErw/CZs0Yzr6yYs8YURLx/kVhRAiwiIiJpLVXHdgaSjGOd9YDCObF87wfblwG+etlp3DGjiOED8qIJUySm1OdARERE0tr8WRPIz87ssizZx3YG0tGV2Fdbj+VEV+IVlb5EhxZSsGQslg8oVlT6KFu0mpIFKylbtNr11yRWYvne//uLSghUtDnTwClD+yr5FddQAiwiIiJpbc60QhbOnUJhQT4G/7yuC+dOcX3LaKRCdSV2M6cfUCTrg4FYiMV7v7LmIP/0RCUPrXyPNnvy6y0W17/HJL2oC7SIiIikvVQb2xlIsnYldrr4VLoXQYvmvd/c2saLb+9iyZoq3thWS//cLO6eWcz/rqkKuL7b32OSXpQAi4iIiKSBZB7r7OQDimR9MJAIB4418cTGGpatq2bX4QZKhvble589kxumj6FfbhYvvr0rad9jkj6UAIuIiIikAbfPY5uoAl3J/GAgXrbuOkK5p4rnKn00trRx0WlDWTh3ChefPoyMTgN/3f4eEwElwCIiIiJpwc3z2EYz12+sKGkLrK3Nsvr9PZSvrcLz0X7ysjO4YfoY5s0s5rQR/QNu4+b3mEgHY22A0eopoLS01FZUVCQ6DBERERHpQdmi1QFbYQsL8vEsuMzx4yfj9FBOOdrYwtMV21i61kv1/jpGDczjzguKufW8sRT0yUl0eCJdGGM2WWtLI9lGLcAiIiIiklCJHoebDkXQelKzv46la708VbGNo40tTB83iPmzJjDrzJFkZ2riGEkdSoBFREREJKE0DjcxrLWs+2Q/S9Z4+fP7u8k0hs+cNYp5ZSWcPbYg0eGJOEIJsIiIiIgklMbhxldDcyu/f8NHucfL+7uOMLhvDv946XjuOH8cIwbkJTo8EUcpARYRERGRhFLxpPjYfbiBZeuqeXxjDQeONTFxZH9+fONZfPbs0eRlZyY6PJG4UAIsIiIiIgmncbjOeWNbLeWeKla+uZNWa7nyjBHMKyvh/FMGY4zpeQciKUQJsIiIiIhIimlubeOlt3dR7qlic00t/XOzuGtmMXddUEzRkD6JDk8kYZQAi4iIiIikiIPHmnji9RqWratm56EGiof04cFrJ3Fj6Vj65eqrv4g+BSIiIiIiSe6D3Uco91TxXKWPhuY2Lhw/lIfmTObSCcPJyOhdN2fNkyypRAmwiIiIiEgSamuzvLp1D+UeL2s+2kduVgZzzynk7pklTBjZPybHWFHp61Kh21dbz/3L3wJQEixJSQmwiIiIiEgSOdrYwjMV23h4XTVV+44xckAe37pqAreeW8SgvjkxPdbiVVu7TE8FUN/cyuJVW5UAS1JSAiwiIiIikgRq9tfx8DovT72+jSONLZxTVMB9t07jqskjyc7McOSYO2rrI1ou4nZKgEVEREREXMpay/pPDlDuqeKV93aTaQyzzxrFvLISpo4tcPz4owvy8QVIdkcX5Dt+bBEnKAEWERERSWIqUJSaGppb+cOWHZR7vLy38zCD++bwlUvGc8f54xg5MC9uccyfNaHLGGCA/OxM5s+aELcYRGJJCbCIiIhIklKBotSz53ADy9ZX8/iGGvYfa2LiyP786IYpXDe1kLzszLjH0/E+0kMWSRVKgEVERESSlAoUpY4t22op91Sx8q2dtLRZLp84gnsuLOaCU4ZgTO+mMeqtOdMK9X6SlKEEWERERCRJqUBRcmtpbeOld3ZR7vGyqfog/XKz+Pz5xdw1cxzjhvRNdHgiKUkJsIiIiEiSUoEiZzk1vrq2roknNm5j2TovOw41MG5IHx64dhI3Th9D/7zsGEQuIsEoARYRERFJUipQ5Bwnxld/uPsI5Wu9LN+8nYbmNsrGD+H7103m0onDycxIbDdnkXShBFhEREQkSalAkXNiNb66rc3y1w/2ssRTxWsf7iM3K4PrpxVyd1kxE0cOiHXYItIDJcAiIiIiSUwFipzR2/HVxxpbeHbzdpZ6vHyy7xgjBuQyf9YEbj2viMF9c2IZqohEQAmwiIiIiEg3kYyv7jxWeHj/XM4YNYBNNQc50tDC1LEF/PyWqVwzZRTZmRnxCF1EQlACLCIiImnNqUJHktwunTiMx9bXYDstCzS+ekWljwXPvklDSxsAu480svvIXqYVFfBvn5nEOUWD4hi1iPRECbCIiIikLScKHUnsxfshxYpKH89u8nVJfg1ww/Su3c0bmlt58A/vHE9+O9tzuFHJr4gLqR+GiIiIpK1QhY7EHToeUvhq67GceEixotLn2DEDvS8s8Or7ewHYc6SBn77yAWWLVlNb3xxwH5qLWcSd1AIsIiIiaau3hY7EebGqxhyJYPffV1vP1598gxfe3EFLm+XyicOprKll/7Gmk9bVXMwi7qQEWERERNJWJIWOgknFMcTBzsnJcw2270Q8pAj2vgB4+Z1d3D5jHHfPLKZ4aN+TutGD5mIWcTMlwCIiIpK25s+a0KvkJRXHEAc7p4rqAzy7yefIuYa6jrF4SBGp+bMmdClsBf4xwNdNHc3350xmQF728eWh5mJOxYcjIslOCbCIiIikrVDJSzgS0T3XacHO6YkN22i19qTlsTjXUNextw8pIvXRniO87j1AW6dTHdw3h+9ccwZzp48JuE2guZhT8eGISCpQAiwiIiIJl8iWskDJS7hScQxxsNi7J789rR+LY+6ore/1Q4pwtLVZ/vrhXso9Xv72wV5ysjK4flohd5cVc8aoAVHtMxUfjoikAiXAIiIiklDJ3FKWiO65Tgt2TpnGBEyCY3GuPV3H3jykCOVYYwvLN2+nfK2XT/YeY3j/XL756dO59bwihvTL7dW+U/HhiEgqUAIsIiIiCZUsLWWBWqnj3T23ezzfe/4dDtb5p+EpyM/mM2eP4tX39/aqpTTYOd0wvbDLGOCO5bE413hfx20H6nhknZffvb6NIw0tnD22gJ/fMpWrJ48iJys2s4Sm4sMRkVSgBFhEREQSKhlayoK1Ui+cO4WFc6fEvfv2ikof85/ZQnPriRbZ2vpmHl1fc/znaFvSQ3U5Lh032JFzjUc3Z2str3sPsmRNFS+/uwtjDFdPHsk9F5ZwTtGgmB2nQyIfjohIcMYGGc+R7EpLS21FRUWiwxAREZEelC1aHbClrLAgH8+CyxIQ0cncFmOweAJx03VMhMaWVp7fspNyTxXv7DhMQZ9sbj2viM+fP87x1lhVgRZxljFmk7W2NJJt1AIsIiIiCZUMLWVua6WO5LhuakmPpz1HGnhsfQ2Pbahm39EmThvej4VzpzBnaiH5OZlxicGpscsiEj0lwCIiIpJQ8ej+2lvBxnNmGEPJgpVxjzlYPMHWTSdv+w6xxFPFC1t20tTaxuUThzOvrISy8UMwxiQ6PBFJMCXAIiIiknBubykL1EoNJ6YGinfl6vmzJpw0BjgQt7WkO6WltY1X3t3NEk8Vr3sP0jcnk9tmFHHXzGJKhvZNdHgi4iJKgEVERER60L2VOiPAlEDxrFzdcQwnqkAnk0N1zTxZUcPDa6vx1dYzdnA+35l9Bp87dywD8rITHZ6IuJCKYImIiIhEqGTBSgJ9gzJA1aLZ8Q4n7Xy05yhL11Ydn5bp/FMGc09ZCZefMYLMDHVzFkkXKoIlIiIiEgea4zX+2tosf/twL+UeL3/9YC85WRlcd/Zo5pWVMGn0gESHJyJJQgmwiIiISISSoXJ1qqhrauHZzT6Weqr4eO8xhvXP5RtXns5tM4oY0i830eGJSJJRAiwiItILmuczPSVD5epkt/1gHcvWVfPExhoON7Rw1piB/OzmqVwzZRQ5WRlxjUWfc5HUoQRYREQkSisqfV1aAeNdCVgSy+2Vq5ORtZaK6oOUe6p46e1dGGO4avJI7ikr5pyiQQmZxkifc5HUogRYREQkSotXbT1pWpx4VgIWSRWNLa2sfHMnSzxVvO07zMD8bL74qVO584JxCR9Xrc+5SGpRAiwiIhKlHQGKIIVaLiJd7T3SyGMbqnl0fQ37jjYyfng/fnj9ZOZOG0N+TmaiwwP0ORdJNUqARUREoqRKwJIM3DR+tSMWX209fbIzaWxto7XNcumEYdxzYQkXjh+akG7OoehzLpJa4ltBQEREJIXMnzWB/OyurVSqBCxu0jF+1Vdbj+XE+NUVlb64x7J803a+9cybx5PJuvZuxf9yzUTK553HRacNc13yC/qci6QaJcAiIiJRmjOtkIVzp1BYkI8BCgvyWTh3isYFimuEGr8aL4fqm/nt3z5h/rNv0tTa1uW11jbLw2ur4xZLNPQ5F0kt6gItIiLSC6oELG6WyPGrn+w9ytK1Xp7ZtJ26ptag6yXDWFp9zkVShxJgERERkRQV7/Gr1lpe+3AfSzxV/GXrXnIyM/js1NHMKyvmi49s0lhaEUm4qBNgY0y2tbY5lsGIiIiIRMpNRZ7cZv6sCV3msAVnxq/WNbWwfLOPpWu9fLTnKMP65/L1K07nthlFDOuf26tYdH9FJJbCSoCNMf8E+Ky1z7b//H/AXcaYj4HPWmvjN5BEREREpF1HkaeOpKqjyBOgJIkT18CpBNJXW88j67z8buM2DtU3M6VwIP9589nMnjKanKyupWaiiUX3V0RizVhre17JmI+Ae6y1fzPGfApYCfwdcAPQ11r7GWfDjFxpaamtqKhIdBgiIiLioLJFqwN2qy0syMez4LIERJT6rLVsqj5IucfLS+/swlrL1ZNHMa+smOnjBsW0krPur4iEYozZZK0tjWSbcLtAFwJV7f++FnjaWvuUMeYt4LVIDigiIiISK4ks8pRumlraWPnWDso9Xt7cfoiB+dl84aIS7rygmEKHxvHq/opIrIWbAB8GhgPbgCuBxe3Lm4E8B+ISERER6VG8izylo31HG3l8Qw3L1lez90gjpw7ry0NzJjP3nEL65DhbT1X3V0RiLdzfWi8DvzXGbAbGAy+2Lz+TEy3DIiIiInEVryJPqSDSYlLv7DhEucfLH7bsoKmljUsmDGNeWQkXjR9KRkbsujmHovsrIrEWbgL8FeCHQBFwo7X2QPvyc4AnnAhMREREpCdOF3lKFeEWk2pts/zpvd0sWVPFhqoD5GdncnPpWO4uK+bUYf3iHrfur4jEWlhFsJKRimCJiIiI+PVUTOpwQzNPvb6Nh9d52XagnsKCfO6eWcznzh3LwPzsBEQsItIzJ4tgYYwZAXweOBX4N2vtPmNMGbDDWht2N2hjzL3AfGAU8A7wNWtt0EJaxpgc4Dvtxx4N7AZ+Yq39RbjHFBEREUlnwYpG+WrreeD3b/P0pu3UNbVyXvFg/vWaM7jijBFkZWYE3EZEJJmFOw/wdODP+Mf7nom/CNY+/AWxTgduC3M/NwM/B+4F1rT//aIxZpK1tibIZr8DxgBfBD4ERgCqfCAiIiIJEelYWjcIVkwK4ImN27j27NHMKytmcuHAOEfmfsl4v0VCSff3dLjzAL8K/M1a+4Ax5ghwtrX2E2PMBcDvrLXjwjqYMRuAN621f99p2YfAM9ba+wOs/2ngaeBUa+2+8E7JT12gRUREJNa6j6UFf1GmhXOnuPoL5IpKHwuefZOGlrYuy686cyQ/mDOZYf1zExSZuyXr/RYJJtXe09F0gQ63b8t04OEAy3fib5HtUXtX5un4K0p39jIwM8hmc4DXgfuMMduNMR8aY35hjIl/FQYRERFJe4tXbe3yxRGgvrmVxau2Jiiinu2oref9XUe6VG4e1Cebn9x4Fr/+/HQlvyEk4/0WCUXv6fDHANcDgwIsnwjsCXMfQ4FM/GN4O9sNXBFkm1OAC4FG4AagAPgl/rHAN3Zf2RjzRfxdpSkqKgozLBEREZHwBBtLG2x5olhr2VxTyxJPFS+9vQtrLbPOHMk9F5ZQOm4QxsRnGqNklyz3WyRcek+HnwD/HnjAGHNT+8/WGFMM/Ah41onA2mUAFrjNWnsIwBjzj8AqY8wIa22XZNpa+xvgN+DvAu1gXCIiIikr3ceHhRJsLO3oAneUJ2lqaeOPb+2k3FPFlu2HGJCXxd9dWMKdF4xjzKA+iQ4v6UR6v/XZEbdz+++weAg3Af4m8EdgL9AHfwGrEYAHf4XmcOwDWjm5y/QIYFeQbXYCvo7kt9177X8XcXJrsoiIiPRCuPPFpqv5syYEHD83f9aEBEYF+4828viGGpatr2bPkUZOGdaXH8yZzA3nFNInJ+xJPyKW6glfJPdbnx1JBm79HRZPYf1GtNYeBi40xlwGnIO/ZXaztfZP4R7IWttkjNmEv3L0051eupLgrcge4CZjTD9r7dH2Zae3/10d7rFFREQkPKHGh+lL/IlExi1J33s7D1PuqWLFGztoamnj4tOH8eMbi/nUacO6jPl1QjokfJHcb312JBm47XdYIoRVBTpmB/NPg7QM//RHHuBLwN8BZ1prq40xjwBYa+9sX78f/hbf9cCD+McA/w/wnrX2pu7770xVoEVERCJXsmAlgb4ZGKBq0ex4hyMBtLZZ/vzebpZ4qlj/yQHyszO5YXohd88sYfzw+NUJnfq9l6mtbz5peWFBPp4Fl8UtDrfQZ0ck/qKpAh3uPMD3hXrdWvvTcPZjrX3SGDMEf7fpUcDbwDXW2o7W3KJu6x81xlyBv/DV68BBYAWwIJzjiYiISGQ0Psy9Djc089Tr23hkXTU1B+ooLMjn/qsncsu5RQzskx3XWFZU+gImv5BexXQ602dHJDmEOyjkq91+zsafwNbjrwIdVgIMYK39FfCrIK9dEmDZVuDT4e5fREQkkFQfqxhMpOcdzviwzvss6JONtXCovjmtrms8Ve07xsNrvTxdsY1jTa2cWzyI+6+eyJWTRpCVGe6MlrEVasqUaBK+VPh8amylSHIIdwxwSfdlxpgRQDnw21gHJSIiEkupPlYxWPIQzXn3ND6s+z4P1p1oBUy165pI1lo8H+2n3FPF6q17yMowXHvWaOaVlTBlzMBEhxeylTfShC9VPp8aWymSHHo1BtgYMw14ylp7WuxCig2NARYRkQ5li1YH7JqYCmMVuycP4G91Wjh3CotXbY35eQe7lrHaf7praG7luUof5Z4qPth9lKH9crh9xjhuP7+I4f3zEh3eccHeB4P6ZFP53cg67qXy51NEnOXYGOAQMjh5WiMRERFXCdZalQpjFUNVnnXivMPZNhWua7ztPFTPsnXVPL6xhtq6Zs4cPYCf3HQ21549ityszESHd5Jg3X0fuPbMiPeVyp9PEXGfcItgze2+CP8Y4K8Ar8U6KBERkVhK5eI0oZIHJ8472D5jtf90s7nmIEvWVPHi27uw1vLpSSOZV1bMeSWDMcbZaYx6I5bdfVP58yki7hNuC/Az3X62wF5gNfCNmEYkIiISY4kuTuNkgZ9QyYMT5x1on50Z/GM4yxatdnT8YzyLJsX6WE0tbbz49k6WeLxs2VaLgePT56z/ZD9XTR7p6uS3w5xphTG55on+fIpIegm3CFZiSgyKiIjEQCKL0zhd4CdU8uDEeXffZ0cV6Nr65i6JnFOFjFZU+njwD+90mYLHyaJJsbx/B4418fiGapatr2b34UaG9c8lw0Bbp3IstfXNzH96S1T7T1YqHiUi8dSrIlhupiJYIiLiBvEo8OOGKWTidZ6hWp+dKJoUi/N6f9dhytd4WfGGj8aWNi46bSj3XFjCvy5/ix2HGgJuowJQIiI9i2kRLGPMfeHuxFob9jzAIiIi6SQeBX5i1RW1N+JxnoEKfjl1rJ722dOxWtssq9/fQ7mnirUf7ycvO4Mbp49hXlkx44f3B2BnkOQ3nP2LiEh0QnWB/mqY+7CAEmAREZEA0qXATzzOs6ek0IlrGul5HWlo5umK7Sxd66XmQB2jB+ax4OqJ3HLuWAr65LCi0sddS15nR209GcbQGqQnXqq9P0RE3CJoAmytLYlnICIiIqkoXQr8xOM8Q1Wg7n6sWHULD/e8qvcfY+laL09XbOdoYwul4wbx7asmMuvMEWRlZhyPqfO+giW/2RnG8feHG7rNi4gkQm/nARYREZEQ0qXATzzOM1gF6kF9snng2jOPHyuWhatCnZe1lnUf72eJp4o/v7+HrAzDZ84azbyyYs4aU3DSvoJ14TYGOnLhgvxsHvysfy7dskWrHbmWThdmExFxs7CLYBljBgFXA0VATufXrLXfj31ovaMiWCIiIqknnJZLpwtyNTS3sqLSR7nHy9bdRxjSN4fbZxRxx/njGD4gL+h2JQtWEuhblwGqFs0+/nOgYl/52ZksnDslJglqPAqWiYjEQ0yLYHXb8fnASqARGAb4gFHtP3sB1yXAIiLpTN0bJRbc+D4Kp+BXLAtydb4GIwbkMaVwIBXVBzhY18wZowaw+MazuPbs0eRlZ/a4r3DHEwdqKa5vbmXxqq0xuf7xKFgmIuJW4XaBXgw8BvwzcBi4DDgGPAH8nzOhiYhINNS9UWIh0Pvo60++QUX1AR6aM6XHbcNJnJ1KsGNRkCvQfMO7Djew63ADYwfl8//umM6MksEYY0Luo/P5XTpxGM9u8vU4ntjpBDXY9bH4W4fd8KBDRMQpGWGudxbwX9bfX7oVyLXW7ga+DTzoUGwiIhKFUK1HIuEK9D6ywGPra1hR6Qu6XUfi7Kutx3LiAUz3bcJdLxrzZ00gv1uLbCQFuVZU+ljw7Jtdkt/Oth+sZ9ehhh6T3+7n9+wmHzdML6SwIB+Dv8txoG7NwRL1WFWGDnR9OsTyPoiIuFG4CXBTp3/vBsa1//soMDqmEYmISK+oe6PEQrD3i4WQD1PCfQDj5IOaOdMKWTh3So+JZiAHjzXx3d+/TUNLW9B1eroGEPz8Xn1/L54Fl1G1aDaeBZcFjKm3CXxPOl+fQPTATERSWbhdoDcD5wIfAH8BHjLGjADuAN50JjQREYlGusw7K84KNeVQqIcp4T6AcfpBTThjhTvbuusI5Z4qnqv00Rgi+e3QU5y9Ob94VNTuuD7BCnPpgZmIpKpwE+B/Bfq3//s7wCPAL/EnxPMciEtERKKULvPOirPmz5rA1598I2ByFOphSrDEOcMYShasPJ7MueFBTVubZfX7eyhfW4Xno/3kZWcw95wx/Pm93ew50hhy2444g41j7u35RZrAR8sN90FEJJ7CngYp2WgaJBFJZ26s3ivJ5zsr3uKx9TVdkuCepuMJNIVPd/nZmdwwvTBgQahYTfXTOZ7un4UrJo3g6YptPLzWi3d/HaMG5nHnBcXccu5YBvXN6fEcOuIEgk5XFOy1G6YX8ur7e13z2XR6yqVE0O8/kfQRzTRIYSXAxpifAcustZuijC3ulACLiIj0XjTJROdtMoyhNcB3jcL2fTmZqARK7jIzDFkZhsaWNqaPG8S8smJmnTmS7MyMk7btiK2gTzbWwqH65i5x9jSfbrhVoBOdbKZSwpiKCb2IBOdkArwWOB/YCjwKPGat9UYTZLwoARYREUm8YGNMDVC1aLajxw6WoBr8hawKe5nsRXpuPSXM0nu6xiLpJZoEOKwq0NbamcB4/HMB3w58bIxZY4z5kjFmUOShioiISDpwekqfYBqaW4MW8epIWns75U+k56YK7c7TNRaRnoQ7DRLW2k+stQ9Zayfhrwi9Hn9BrB1OBSciIiKJs6LSR9mi1ZQsWEnZotVRJYpOTukTKL7dhxv4yaqtzFy0Oqx9BJvyJ5xzj/TcEvUwIJ3oGotIT8KtAt1dNpAL5ADBq1yIiIi4SCqNdXRKxzXy1dYf7yoMJ1pLgYiumVNT+nQf6+mrrecbT23BYrHAFWeM4PQR/fi/16pCzukLJ7cOBtp3oHOP9NxUod15usYi0pOwq0AbY07H3/35NmAc8Cr+8cDLrbXHHIswShoDLCIinak4Ts/CqeDslrGUwcZ69s3N5MV/+hRFQ/oA4Rfk6nxOTo4j1UMY5+kai6SPaMYAh9UCbIypAKYBbwC/Ap6w1u6KOEIREZEEWbxq60mJXUf3V3059gt0jbpzw1jKg8eago7vrWtsPZ78Qtf5dIM9BOneOujkONJ4ze+bznSNRSSUcLtArwI+b619z8lgREREnJKuxXEiaQ0L51okcizlB7uPUO7x8lzl9qDrhIov3C7LowvyAybYGkcqIpL8wkqArbX/6nQgIiIiTkq1pCacxDbQWNavPfkGX3vyjYBTAAW7Rh0SMZayrc3ylw/2sGSNlzUf7SM3K4O55xRSNKgPv1j9UcRjPcNpHYznOFJ11xURia9oi2CJiIgklVQojhNpgapQXZoDbRPoGsVqztxIHW1s4ZmKbTy8rpqqfccYOSCP+bMmcOt5RQzumwPAqIJ8R5JHpwp3dRdusS0REYkdJcAiIpIW4pXUOKV7stS9lFOg8cw9dWkOtE1uVsbxYwzqk80D157p6DXq3gJ6T1kxOw418NTr2zjS2MK0ogJ+ees0rpo8kuzMrrM3OjnWMx7jSDUuXUQk/pQAi4hI2kjm4jjRFKjqqUtz520CFYhqaA49fVBvBWoB/cHK98gwcO3Zo5lXVsLUsQWOxpBI6TouXUQkkTJ6XkVERCT5raj0UbZoNSULVlK2aDUrKn2JDiki0RSomj9rAibMbUK1Rjrlxy+9HzCpH94/j5/fMi2lk18IPv48Wceli4gkg6AtwMaYonB3Yq2tiU04IiIisRdqrCUkR7foaApUzZlWSEX1AR5bX3NSl+nu28SzNXLP4QYeXV/NjkMNAV/ffTjw8lCSsZhUKoxLFxFJNqG6QHs5eYhRMJm9D0VERMQZwVo3v/f8OzQ0tyVFEaJoC1Q9NGcKpeMGHy+elWkMrdaetE08qmS/ub2WJWuqWPnWTlraLHlZGTS0nNzNOtJjJmsxqWQfly4ikoxCJcDndvr36cCPgV8D69qXXQD8A/BtZ0ITERGJjWCtmAfrmk9a5tYiRL1JlhI59U9LaxsvvbOLco+XTdUH6ZebxR3nj+PumcVU1tTG5JjJXEwqmceli4gko6AJsLV2U8e/jTE/Bb5urX2m0yqrjTFbgX8GnnAuRBERkd4JpxhUZ24tQuR01WOIXWtkbV0TT2zcxrJ1XnYcamDckD48cO0kbpw+hv552QCMG9I3JsdUMSkREQlXuFWgzwPeDLD8TWB67MIRERGJvWCtm7lZGdTWn9wKHG4X3GQcdxpKsAQ7kvP8cPcRytd6Wb55Ow3NbZSNH8L3r5vMpROHk5lxckmuWCT18ei+LSIiqSHcBNgL3At8rdvye4HqGMYjIiISc8FaN4Gou+Am67jTSIVznm1tlr9+sJclnipe+3AfuVkZXD+tkLvLipk4coDjMSaimFSqPfwQEUkX4SbAXweeM8ZcBaxvXzYDKAbmOhCXiIhITIVqaYwmkUnmcaeRCHWeV04awbObt7PU4+WTfccYMSCX+bMmcOt5RQzumxO3GONdTCpdHn6IiKQiY214hZ6NMWPwt/hObF/0HvBra+02h2LrldLSUltRUZHoMEREJEWVLFgZcKoEA1Qtmh3vcBwT7DwB+udlcaShhaljC5hXVsw1U0aRnZkR1/gSoWzR6oBdrgsL8vEsuCwBEYmIpCdjzCZrbWkk24TbAoy1djvwLxFHJSIikoLSZdxpqAJil0wYzryyYs4pGhTnqBJLRbdERJJX2AmwMWYK/mmPTgH+zlq70xgzB6i21lY6FJ+IiKS4ZB1LGcm40xWVPh78wzvHC271yc4gNzuT2rrmgOfsxDWJdp9fu+I0/uW5t2huPdEOnJVh+M7sM7i7rKRXMTkpVtcw0H7S5eGHiEgqCisBNsZ8GvgD8CJwOdDxG/5U4G5gjgOxiYhIikvmsZThjjtdUelj/tNbaG47kUDWNbdR19wGnHzOTlyTSPbZkfD5auvpn5uFBZpbLVkZhpY2y+iBeXzrqomuvj+xuobB9nPD9EKe3eSLa9EtERGJjbDGABtjNgAPW2t/ZYw5Apxtrf3EGDMdeN5aO9rpQCOlMcAiIu6XDmMpg51jdx3n7MQ1CXefKyp9fPvZN2lsaTu+LMPAly4+lfmzJmDMydMYuVGsrmGo/cyfNSEpey6IiKQSJ8cATwb+GGD5AWBwJAcUERHpkA5jKcM9l471nLgmPe2zpbWNl9/dzbeeeZOm1rYu67RZ+P0bO/jWVRMD7cKVYnUNQ+0nFvMXOylZhxaIiDgt3AT4AFCIfz7gzs4BtscyIBERSR/pMJYyVBGp7uuFWr831yTYPkcOyON//voxj6yrDhljsj2QiNU1jGQ/bko4k3logYiI08Kdq+BxYHH7VEgWyDLGXAz8BHjEqeBERCS1zZ81gfzszC7LUm0s5fxZE8jOCN11uPM5O3FNAu0zM8Ow/1gTC198n6LBffjtnaWMHpgXcPtkeyARq2sY7n46Ek5fbT2WEwnnikpfVPH3Vqi5m5PJikofZYtWU7JgJWWLVifseopIagm3Bfg7wFKgGv8Uh++2//048ENHIhMRkZQXbiGpZNZxLuFWgXbimsyZVkibtfxw5XvsP9YE+P8Tv35aIXeXFXPGqAEAHGtsCbuytZvF6hqGu59QCWci3supMLRArdgi4pSwimAdX9mYU4Fp+FuOK621HzoVWG+pCJaIiIg/qV2+eTvla718svcYw/vncucF47j1vCKG9Ms9aX03deVNFiULVhLo25QBqhbNjnc4KVFcLhXOQUSc51gRrPb5fldaaz8GPo4iNhEREYmj7QfreGRdNU9srOFIQwtnjy3g57dM5erJo8jJCj4Cyu3FndzIbWPZI5mj2q1SoRVbRNwp3C7QjwP1xpingWXWWo+DMYmISIypVe8EN1+L3sZmreV170GWrKni5Xd3YYzhrMKBbD9Yz5vbavnxS1uxVl1IY81tCWcqDC1w20MFEUkd4SbAI4AbgduAvxpjavAnxY9aa993KjgREek9jaU7wc3XojexNba08sKWnSzxVPHOjsMU9MnmHy4+leH9c/nxS1tdeb6pxA0JZ6CHJ8ncVdhtDxVEJHVENAYYwBgzGrgFfzI8DdhsrT3Xgdh6RWOARUT8NJbuBDdfi2hi23OkgcfW1/DYhhr2HW3ktOH9uOfCEuZMLSQ/J9PV5yux0/3hCfiTxYVzpyT1gw4399YQEXdwbAxwZ9baHcaY/8JfEfo7+OcCFhERl4r3WDo3f2l187jCSGJ723eIJZ4qXtiyk6bWNi6fOJx5ZSWUjR+CMSbktqGWS3JyWxXqWNF4dBFxQkQJsDHmUuB24Ib2RcuB+2IdlIhIqotnkhjPsXRu7mIMzlyLWN3LnmJraW3jlXd3U+7xstF7gL45mdw2o4i7ZhZTMrRvVPuU1KAHHSIi4Qu3CvRPgJuB4cBLwBeBP1hrGx2MTUQkJcU7SYznWLretEQ58VCg+z4vnTiMZzf5en0tOvbrq63HwPEpcHpzL4Pdp69ceiq/+dvHPLy2Gl9tPWMH5/Od2WfwuXPHMiAvO6p9ahxlatGDDhGR8IU1BtgY4wEeBZ601h5wPKoY0BhgEXGrRIzLjFeLc7D5UMF/fsGO78QYxmD7vGF6Ia++vzfqaxFov91Fey8736dh/XM5bXg/NtfUUt/cyvmnDOaeshIuP2MEmRmm550F2GdP5+vm7uvxkozXIFXHAIuI9MSRMcDGmGxgO/BysiS/IiJulojuivEaSxesJcrA8eWBWkmdGMMYbJ+vvr+3Vw8aAu23u2jv5XVTRzOobw5L1lTx1w/2UlvfzHVnj2ZeWQmTRg+Iap/h3nu3d1+Ph2S9Bm6oQi0ikix6TICttc3GmE8D98chHhGRlJfK3RUDdbnt3EW4Q/fk1omHAk49aAhn+0jvZV1TC89u9rHUU8XHe48xrH8u37jydG6bUcSQfrlBt4tla2WqFlKKRDJfAxWMEhEJT7hFsJYDc4GfOBiLiEhaSOVxmYFaogIl+9A1kXTioYBTDxpCnRNEdi99tfU8stbLExtrONzQwlljBvKzm6dyzZRR5GRlhNw21q2VieiZ4LbuxiomJSKS+sJNgGuA7xhjLgIqgGOdX7TW/jTWgYmIpKpU767YvSUq2JjnzoloLB8KBCtQ1XmfvUm8QrVyF4axL2stFdUHKfdU8dLbuzDGcNXkkdxTVsw5RYO6TGMUSqxbK+PdM8GN3Y0L+mRzsK75pOWxvAZuS/pFRNJNuAnw3cBB4Kz2P51ZQAmwiEgE0qm7YjjJbaweCnRPqiwnJ6dArxKvaGNtbGll5Zs7WeKp4m3fYQbmZ/PFT53KnReMiyrBinVrZbx7Jritu/GKSh9HG1pOWp6daWJ2DdyY9IuIpJuwEmBrbYnTgYiISGoKN2GMxUOBQElVR/LbUfiqbNHqXidekcS690gjj2+oYdn6avYdbWT88H788PrJzJ02hvyczLD2EUisW2zj3TPBbd2NF6/aSnPbyTXM++ZkxewauC3pFxFJR+G2AB9njBkB7LXWtjkQj4iIpKB4tXiHk1TFK/F623eIco+X57fsoKm1jUsnDOOeC0u4cPzQsLs5h+JEi208eya4rRhcsPt/qP7kLtGxPobGGIuIxE9YCXD7VEg/BL4M5AOnA58YY34EVFtrf+VciCIiiaUxe8kjnKQq2DoFfbIpW7S6V/e5tc3yyru7WOLxsrHqwPHu18P753Ld1EIuOm1YpKcU9P0XqMX20onD+N7z7/C1J9/wn1N+Ng9+9syYvV9j+VlwWzG4eCTksTqGfieJiEQvdInJEx4ArgXuABo7Ld+If3ywiEhK6hiz56utx3JizN6KSl+iQ5MA5s+aQH52127F3ZOqQOtkZxqONrREfZ8P1Tfz2799wsWLX+VLj27moz1Hycowxwtw7TnSGNX7pqf335xphXgWXEbVotnMnzWBJ1/f1qWIU219M/Of3hKT92usPwtzphWycO4UCgvyMfi7qS+cOyVhiVw47x03HEO/k0REesdYe/J4l5NWMuZj4B5r7V+NMUeAs621nxhjJgAbrLUFDscZsdLSUltRUZHoMEQkyQWrYNx5TKm4SzitY93XOdbYQm2Arq493edP9h5l6Vovz2zaTl1TKzNKBjOvrITvP/8OOw41BN1fuC14kbz/gq0bznmEIx0+C/FoWe3tMdLhPoiIhMsYs8laWxrJNuGOAR4NVAfZPuJxxCIiyUJj9pJPOONYu69TsmBlwPUC3WdrLa99uI9yTxWvbt1LTmYGn506mnllxZw5eiAAX350U9D9RVIJOJL3X6j3ZCzer+nwWYjHGOjeHiMd7oOIiJPCTV7fAT4FeLst/xwQ+H95EZEU4LZCPeki3mMcw7nP9U2tLK/cTrnHy0d7jjKsfy5fv+J0bptRxLD+uWHvL5JKwJG8/4KtG2z9SOmz4A66DyIivRPuGODvAb80xvwrkAncZIwpBxYAP3AqOBGRRIvHuEDpKhFjHEPdZ19tPQtffI/zF/6Zf33ubfKzM/nPm8/G8+3LGDekD3P+20PJgpWULVp9PMZQ+4ukBa+n99+KSh9li1ZTsmAlxxpbyMw4ubp0dkbXeWw7b9M55p709rMQ7XGlK/1OEhHpnXDnAX7eGPM54F+ANvxFsTYD11pr/+RgfCIiCRXvuVElMXOldr/PowbmceP0Mbzy7m6+8fQWrLVcPXkU88qKmT5uEMaYsLoyB3rfLF61NewWvFD76X782vpmsjMMeTmZHGvyL+teBTqS7teRxNKT3hxXutLvJBGR3gmrCFYyUhEsEZHkVLJgJYH+ZzJA1aLZjh67qaWNlW/toNzj5c3thxiYn80t543lzguKKeyWoEZbjKh7Mgj+FrxIKyBHc/xEFVBS4SYREXGCY0WwjDHDAKy1e9t/ngLcDLxjrX0i0kBFRESCScQYx31HG3l8Qw3L1lez90gjpw7ry0NzJjP3nEL65AT+rzLaYkSxasGL5viJKqCkwk0iIuIW4RbBegpYBiwxxgwF/gbsAL5qjBltrf0PpwIUEZHwxbt4lBPmz5oQsIXUiTGO7+w4RLnHyx+27KCppY1LJgxjXlkJF40fSkaA8bSd9SZRD1QJONJ7F83xE1VASYWbRETELcJNgM8C1rf/+0bgI2vtucaY64DFgBJgEZEEc+M4y2gS8liOcQx0/GvPHs2f3tvNkjVVbKg6QH52JjeXjuXusmJOHdYv7H3HMlGP5t5Fc/x4Plxww3FFRES6C2sMsDGmDphora0xxjwDbLHW/sAYMxb4wFrruke4GgMsIunGbeMsYzXWNZbHz8owDMzPZv+xJgoL8rl7ZjGfO3csA/Ozoz5GLBL13ownjvT4ieolkAq9E0RExF0cGwMMfAjMNcY8C3waf6svwAigNpIDioiIM9w2zjIR1Zx7On5Lm+VIQwu/vuMcrjhjBFmZ4c4GGFigrszR6M144kiPH6uYI5Wo44qIiHQWyTzAPwK8wHpr7Yb25bOASgfiEhGRCAUbT5mocZaJTMittQFbVAGaW9u4avKoXie/seS2eyciIpKqwp0HeLkxpggYDWzp9NKfgGedCExERHrWuVvpwPxssjMNza0nhrYkcpxlsMJH0XY3Dkd9UyvPVfoo91SFjMttkm2MbDy7M6vrtIiIxFK4XaCx1u4Gdhtj+hljsNYe7dQSLCIicdZ9jGttfTPZGYZBfbKprWtOeLIwf9YE5j+9hea2rrUmjjW1sKLSF9O4dtTW88i6an73eg21dc1MLhzAbecVsXzzdhpa2o6v59akMpaFv5zWm2JrkSazbizsJiIiyS2sIlgAxpivAfcBHf/j7AB+CvzMhruTOFIRLBFJdW4rehXItO+/zMG65pOWxyJGay2ba2pZ4qnipbd3Ya1l1pkjuefCEkrHDcIYo9ZDB/SmYFekRdGS4T0uIiKJ41gRLGPMj4Ev4i9+ta598QXAd4FRwLciCPJeYH77du8AX7PWvhbGdhcCfwHet9ZODvd4IpIalMiczG1FrwKpDZD8Qu9ibGpp449v7aTcU8WW7YcYkJfF311Ywp0XjGPMoD5d1lXhpdiL9n0XTVG0ZHiPi4hIcgm3C/QXgC9Ya5/ptGy1MWYr8D+EmQAbY24Gfg7cC6xp//tFY8wka21NiO0GAY8Af+ZEC7SIpAl1gwws2BhbN41xjWWM+4828viGGpatr2bPkUZOGdaXH8yZzA3nFNInJ+wRPRHRg5eTRXtPo0lmk+E9LiIiySWSbwxvBlkWSRnN+4Cl1trftv/8VWPMVcCXgftDbPd/wMOAAW6M4HgikgISOZ2OGxOgjph8tfUYoPMYlESNcQ12naIt7tR5f8P651IytC+V22ppamnj4tOH8eMbi/nUacPIyDCOnpPTD17c+P7qSbT3NJpkNtmKg4mIiPuFmwA/AnwF+Oduy78MLAtnB8aYHGA68JNuL70MzAyx3b345xt+CPi3MOMVkRSSqG6Qbmx57h6TheNJcGGCEqhwrlOkhY8WPPvm8eJVe440sudII2WnDuF7101m/PB+Dp8Rx2N28sGLG99f4Yi2YFc0yWwyFQcTEZHkEDQBNsb8ott6dxhjZgHr25fNwD8t0mNhHmsokAns7rZ8N3BFkBimAA8A51trW41x7km/iLhXorpBJrLlOZKYOpLfRBUFiuV1OtzQzAO/f6dL5eYO3v11cUt+wfkHL258f4UrmrHV0SazGsctIiKxFKoFeEq3nze1/z2u/e9d7X8mxjooAGNMLvAk8E1rbfAJHbtu80X8xbooKipyIiwRSYBEdYN0YwGeZIsp3FbOqn3HeHitl6crtnGsqTXo/uLJ6QcvibyXiep63VMym4xdwkVEJLkETYCttZfG+Fj7gFb83Zk7G4E/ke5uFHAGUG6MKW9flgEYY0wLcI219uXOG1hrfwP8BvzTIMUwdhFJoHBajpz44uzGAjzJFJMFvvHUFlq7zZTX0cp53dTReD7aT7mnitVb95CVYbj2rNG89uE+9h5tDHiceAo0j3F2honZg5dE3ctgDyUqqg/w6vt7T/oMdf9sXTpxWMD1nIoL3N0lXEREkkvYRbCMMQOB09p//MhaWxvJgay1TcaYTcCVwNOdXroSeDbAJj5OboW+t3396wFvJMcXkeQWquXIqS/ObizAkywxdeie/Hbw1dYz62d/44PdRxnaL4d/uuw0bj+/iOH984LOF5uQc+w+8iaGI3ESdS+Ddb1+bH3N8YJqnZPiZzf5uny2Hl1/YtKGWCapydwlXEREkkePCbAxpgj4b+BqTvzXb40xfwS+aq2tjuB4PwWWGWM2Ah7gS/jHEf+6/ViPAFhr77TWNgNvd4tlD9Bore2yXETSm1NfnN1YgMftMQVq0QwmOzODn9x0NteePYrcrMyA+0vkOS5etZXm1q4JfHOrjVlClqjzDNbFuvujivrmVp7YsC3oQ4zO68Ximrixe7+IiKSekAmwMaYQf9GrNuC7wLvtL52JvzV2rTHmXGvtjnAOZq190hgzBPgO/i7Ob+PvytyRRGvgrohEzMkvzm4swOPmmEoWrDwpkeouw8BXLhnPfZ8+nWDFDd1wjvFIyBJxnsG6XgfSU/LbIRbXxI3d+0VEJPX01AL8AFAFXGGt7fy/0gpjzH/in8LoAeAfwj2gtfZXwK+CvHZJD9s+CDwY7rFEJDV1H5NY0Cebg3XNJ62nL87x11NyNaJ/Lvdfc4bj47djIVUTskBdr7vPJ90h05iwkuBYXBM3du8XEZHUk9HD69cA/9It+QXAWluHvyV3thOBiYgE0jE+1Fdbj8U/BvFoQwvZmV1bEvXFOTG+fMmpZGV0vRfZGYYfzZ2Cd9FsNvzrFSclv93v5/3L32JFpS/OkZ9s/qwJ5GdndlmWCu+rOdMKWTh3CoUF+Rj8U2jdfn5RwHO9dcbYk5Z3F6trEiiuhXOnuOJhiIiIpI6eWoCHAR+HeP2j9nVEROIi0Hjf5jZLQX42fXOzXNeKmC7e33WY8jVeVrzho6XNkpuVQWNLG6MH5vGtqyYGvRduLnzklrHITgjU9bp03OCA59p9+aUTh7HyzZ3He13kZvX0LL13cYmIiMRSTwnwHmA8sD3I66e1ryMiEhfBxhoeqm/mjQc+Hedo0ltrm2X1+3so91Sx9uP95GVncOP0McwrK2b88P5h7cPthY/SKSELdq7dl6+o9PHsphMt9LX1zZquSEREkkZPCfCLwEPGmMuttV0mZTTG5AE/AP7oVHAiIt2l6rjMZHKkoZmnK7azdK2XmgN1jB6Yx4KrJ3LLuWMp6JMT0b50P5OPm1vtRUREetJTAvwgUAF8ZIz5L+D99uWT8FeBzgJudiw6EZFuVCgncar3H2PpWi9PV2znaGMLpeMG8e2rJjLrzBFkZUbXDTYZ76dbi3bFi9tb7UVEREIJmQBba3cYY2bir9r873SaBxhYBfyjtTbxlUpEXC7dvzDHUiqPy3Qjay3rPt7PEk8Vf35/D1kZhs+cNZp5ZcWcNaaAFZU+Ll78l6jvRbLdz46iXR0Je0fRLkif7r9qtRcRkWRmbJhz/BljBuEf8wvwkbX2gGNRxUBpaamtqKhIdBgiJ31hBn8Llxuqmyoxdyc33JeG5lZWVPoo93jZuvsIQ/rmcPuMIu44fxzDB+Qdj9Ot722nlC1aHTD5KyzIx7PgsgREFH/peN9FRMSdjDGbrLWlkWzTUxfo46y1B4GNEUclkubcOl5OLVnulOj7sutQA8vWe3l8Qw0H65o5Y9QAFt94FteePZq8btPhuPW97SR1/02+VnsREZHOwk6ARSQ6bv3CnI7JSzJI1H2prDlIucfLH9/aSau1fHrSCOaVlTCjZDDGmIDbuPW97SR1//VLp+rYIiKSWpQAizjMrV+Y0zF5iRUnuyjH8740t7bx4tu7KPdUUVlTS//cLO6eWcxdM4sZO7hP0O06zj/YAJpEv7edlIxFu0REROQEJcAiDnPrF+ZEJeZuGN/aG053UY7HfTl4rInHN9awbF01uw43UDK0L9/77JncMH0M/XJD/7cQaPxnZ254bztJ3X9FRESSmxJgEYe59QtzIhLzRI9vjQWnuyg7eV+27jpCuaeK5yp9NLa0cdFpQ/n3uZO55PThZGQE7ubcXaDz71Dokve209T9V0REJHkpARaJAzd+YU5EYp4K446d7qIc6/vS1mZZ/f4eytdW4floP3nZGcw9Zwzzyoo5fUT/iPcX7DwNpE0VZBEREUleSoAlbMnedVVOFu/EPBXGHceji3Is7svRxhaertjGw2u9ePfXMWpgHt++aiK3nDuWQX1zot6vW8e0i4iIiIRDCbCEJRW6rkripULyFE4X5UQ+LKrZX8fStV6eqtjG0cYWpo8bxDdnTWDWmSPJzswIax+h4o+ki7YemoWm6yMiIhJ/SoAlLKnQdVUSz60FwSLRUxflRDwsstay7pP9lHu8/Om93WQaw2fOGsW8shLOHlsQ0b56ij/cLtp6aBaaro+IiEhiGGuDTWSR3EpLS21FRUWiw0gZJQtWBpzyxABVi2bHOxxJYqne6lW2aHXAVu7CgvyYj5FtaG7lD2/sYImnivd3HWFw3xxun1HEHeePY8SAvKj2Gav443kdkpGuj4iISO8ZYzZZa0sj2UYtwBKWVOi66pRUT+hizY0FwWIpHuOcdx9uYNm6ah7fWMOBY01MHNmfH99wFp+dOpq87Mxe7TtW8QdbP9DvkXSUCuPhRUREkpESYAlLKnRddYK6MUp3Tj4semNbLeWeKla+uZNWa7nijBHcU1bC+acMxpjwpjHqSaziD7Yfg/9zk+6fDz1UFBERSYzwKqJI2pszrZCFc6dQWJCPwd9Nb+HcKWn/JTbU2GhxnxWVPsoWraZkwUrKFq1mRaUv5seYP2sC+d1aYXvzsKi5tY3nt+xg7q88zPlvD6vf28NdM4v56zcv5bd3lnLBqUNilvxC4PgN/oc7kVyz+bMmECgqC/p8EPv3iYiIiIRHLcAStlTvuhoNdWNMHvFqrY/VPL4HjzXxxOs1LFtXzc5DDRQP6cOD107ixtKx9Mt17ld35/h9tfUYOD7+P5JrNmdaIV978o2Ar+nzkZh5uEVEREQJsEivqBtj8ohnJfPePCz6YPcRyj1enqvcTkNzGxeOH8pDcyZz6YThZGTErqU3lI74AxVqiuSaFerzEZIeKoqIiMSfEmCRXtDY6OTh5tb6tjbLXz7Yw5I1XtZ8tI/crAzmnlPI3TNLmDCyf8Li6u010+dDRERE3EYJsEgvqBtj8oi2tT6cKt/RVgI/2tjCMxXbeHhdNVX7jjFyQB7zZ03g1vOKGNw3p9dx9VZveziE+nwkqnq6qraLiIikN80DLCJpofsYYPC3RoYq5hbONtHsd9uBOpau9fLU69s40tjCtKIC7ikr4arJI8nO7Lk2YTTHjIZTx4l0v7FKWuN13VKdHiKIiIhbaB5gEZEgommtD2fccLhji621rP/kAOWeKv703m4yjGH2WaOYV1bC1LEFEZ1LvMYzO9XDIZL4Y1m8LJ7jwFOVpn4TEZFkpwRYRNJGpEWHwhkD29M6Dc2t/GHLDso9Xt7beZhBfbK595Lx3HH+OEYOzIsg+sjiihUnCjVFEn8sk1Y3jwNPFnqIICIiyU4JsIgklJu7U4YzBjbYOiMG5PHTl7fy2IYa9h9rYuLI/vzohilcN7WQvG7zvzoRl5tFEn8sk9Zkv25uoIcIIiKS7HoebCYiKWFFpY+yRaspWbCSskWrWVHpS3RIx7tT+mrrsZzoTumG2MBfxTi/W7LavYpxoHUyjWHv0UZ++epHTCsaxONfmMGL/3wRN59bdDz57c39CCcuN4sk/mDJaTRJa7JfNzeI5f0QERFJBCXAImnArYlmqO6UbjBnWiEL506hsCAfg39e2+4Fk+ZMK+ShOZMZ1Cf7+LKsTMOdF4zjL9+8hP+9q5SZ44dizIk5fHt7P8KJy80iiT+WSWuyXzc30EMEERFJdqoCLZIGyhatDtj1s7AgH8+CyxIQkV/JgpUE+g1kgKpFs+MdTsRq65p4YuM2lq3zsuNQA+OG9OHumcXcOH0M/fOyg27n1vvhVm7uJp+OdD9ERMQtVAVaRAJy67i9ZB2T+eHuI5Sv9bJ883YamtsoGz+E7183mUsnDiczw/S4vVvvh1s5UYhLoqf7ISIiyUwJsEgacGuiOX/WhIDzsrqxO2Vbm+WvH+xliaeK1z7cR25WBtdPK+TusmImjhwQ0b6ivR+dW94K+mRjLdTWN5NpDK3WUliQz6UTh/Hq+3uTpnXOza2Jbo5NREREoqMEWCQNxCvRjDRhcGqe2Vg61tjCs5u3s9Tj5ZN9xxgxIJf5syZw63lFDO6bA0R+3tHcj+7zrx6saz7+Wmv7UBZfbT2Prq85vtztc7S6eU5ZN8cmIiIi0dMYYJE04XRrVveEAfxJXbIWGdp2oI6H13p5smIbRxpamDq2gHllxVwzZRTZmSfqB0Z73pHej2DjhsPh1rHFbh4L7ebYRERExE9jgEUkKKfH7YWq6JwsCbC1lg1VByj3VPHKu7vJMIarp4xiXlkx5xQNCrhNtOcd6f3ozfhgt44tdvNYaDfHJiIiItFTAiwiMeGmhCHS1tWG5lae37KDco+Xd3ceZlCfbL58yal8/vxiRg7MC3mseJ13sHHD4W7rRm4dm94Rg1tjExERkegpARZxISe7Kzu1b7ckDJGM3dxzpIFH19fw+IZq9h1t4vQR/VjU3nU5r9tcp8EEO+8MYyhZsDJm1zjQuOFwuLWoGLi7CFqg2Axw6cRhYW3f8Tnz1dZ3KVLmtjHuIiIi6Saj51VEJJ46EjhfbT2WEwncikqfq/c9f9YE8rsljYlIZkJ1Se7w1vZD3PfkG5QtWs0vV3/I1LEFPPaFGaz62qe45byisJNfCHze4C9MFctrPGdaIQvnTqGwIB8DDOqTTUG+f67hTOOfeqmwIJ87zi86vk5hQb6rx2B3Pyc3xTtnWiE3TC+k86RWFnh2k6/He9n5cwZdi5TF6vMmIiIi0VERLBGXcbL4jtOFfdwwbUzJgpUE+632q9vPYcmaKiqqD9I3J5ObSsdy98xiiof27dUxO593RntrX3cqnpR8ov289FSwTO8FERGR2FARLJEU4OSYUqfHqzpdaCscwbokZxrDvY9tpmhwH/7tM5O4qXQMA/KyY3LMzuddsmBlwHVUPCn5RPt56e3rIiIi4hx1gRZxmWBjZmMxltbJfbvFpROHdem22uGUYX35zeen8+o3L+HvLiyJWfLbXTpc43QR7b3s7esiIiLiHCXAkrZWVPooW7SakgUrKVu02jXj8pwcSxuLfbv1ugEs37ydp17fflIX6NlTRvLKfRfz6TNHkpkRKD0OLZJz7u01dvP1TTfR3stg48LD3V5EREScoy7QkpYiqRQcbx3Hd2IsbW/37dbr9uTGGv79xfc5VN8c8PU3th2Ket+RnnNvrrFbr2+6ivZedt5OVaBFRETcRUWwJC05XQwqVbntum0/WMe/rXibV7fuDbmeAaoWzY7qGPE8Z7ddXxERERE3UxEskTA5XQwqVbnhullred17kCVrqnj53V20hfEMrzdjLuN5zm64viIiIiKpTAmwJLVop90JVilYxWlCS+R1a2xp5YUtO1niqeKdHYcp6JPNP1x8Kv/vLx+H3C6aMZfhTGuE8Vd8jraLeqD3rt6XJ7hhSi0RERFJPSqCJUmrY7ykr7Yey4nxkuEUDXKy0FQqS8R123Okgf985QPKFr3KN57eQlNLG/9+/RTWLbicb181kcIQyWFhQT4L506JKHHq/r4KmPwC1hLx+y7YMTr2cenEYXpf0rvPtoiIiEgoagGWpLV41dbjxYI61De3snjV1oiK1KiFKXzxvG5v+w6xxFPFC1t20tTaxmUTh3NPWQll44dgzIlKzvNnTehSOAr8SWOkiW+HQO+rnoT7vgt1jPrmVl59fy8L505J+/dlbz7bIiIiIqEoAZak1dvxknOmFerLdBScvG4trW288u5uyj1eNnoP0Dcnk9tmFHHXzGJKhvYNGg/ELimPdrxtJNuFeu/qfamx0CIiIuIcJcCStDReMnUcqmvmyYoaHl5bja+2nrGD8/nO7DP43LljGZCX3eP2sUwag72vwtmut8fQe9dP10dEREScogRYklagrq/ZmYZjjS29Kk7kBpEWAErGgkErKn38+x/fY8+RRgz+8bQdfAfq8e4/FlbyG2uB3lc9CTZON9h9CdZtO93G+gaj65M6kvF3k4iIpDYlwJK0und9LeiTzdGGFmrrm4EThXM6r5sMOgoAdXz57+k8Il0/0ay1LHrxfX772ifHpzDqXmaqDXh0fQ0AD82ZEtf4Or+vfLX1JyXnAPnZGeRlZ1Jb1xz0S30490WJQWC6Pqkh2X43iYhIejA2SIXTZFdaWmorKioSHYbEUdmi1QG7TRYW5ONZcFkCIopOpOeRLOdd19TCs5t9LPVU8fHeY2Ftk2kMHy+8xuHIguvNtU2W+yLiFH0GRETEacaYTdba0ki2UQuwpIxUKZwT6Xm4/bx9tfU8stbLExtrONzQwlljBoa9bbApiOKlN9fW7fdFxGn6DIiIiBtpHmBJGcEK5CRb4Zxg8Vr8LSrd50J143lba3nde4B7H9vERT9azf+uqeKi04fx7Jcv4PdfKQs5d29nmZ2mO0qE3lxbN94XkXjSZ0BERNxICbCkjPmzJpCfndllWTIWzgl0Hh06xtB1ToIDrW+ASycO6/FYKyp9lC1aTcmClQGT60jXb2xpZfnm7Vz7X2u46dfr8Hy0ny9+6lRe+9al/Pdt5zB93GCMMSHPsbNbZ4ztcZ3enE9PevOeinTbWMcukmip8jtZRERSi7pAS8pIlcI53YswdVff3MriVVuPrzdnWiEV1Qd4bH3N8WJNFnh2k4/ScYODnn8si22VjR/K4xtqWLa+mn1HGxk/vB8/vH4y108rpE/Oyb9mAt2r4iH5rP/kIK3WkmkMt84YG1EBLCcK7vTmPRXJtioWJKkoVX4ni4hIalERLBEXK1mw8qQKxOBv4a1aNPv4z9EUm4lVsa0+2Zm0tFmaWtu4dMIw7rmwhAvHD8XEuftyMhfcSebYRURERBJFRbBEUszogvyAiVH3MXShis0Em4czVkW16ppbufOCcdw1s5hTh/ULdTqOSuaCO8kcu4iIiEgyUQIs4oBgSWek5s+a0KVrLAQeQxcsUR6Ynx20a224yXWHkQPy2Hm44aTlowbk8f3rJod/UlEI53pGej6JEuhckiV2ERERkWSnIlgiMdYxntNXW48lcOGqcM2ZVsjCuVMoLMjH4O8Su3DulJOSv2DFZoyhS/IMJ8YQh1ug5pO9R/nu799mf13TSfHlZ2fy7asnRnxekQj3eiZDwZ1g53LpxGGuj11EREQkFagFWCTGFq/aGjTpjKYVeM60wh63C1Zs5utPvhFw/R219SEL1Fhree3DfZR7qnh1615yMjP47NTRFA/pwxMbt8W1oE241zMZCu4EO5dX39/LwrlTXB27iIiISCpQAiyOilVX4GSSqPGcgRLlYJWkO7rWdt+mvqmVxzZUU+7x8tGeowzrn8vXrzid22YUMax/LgD/eNlpDp7FySK5nuE8LEikUOfi9thFREREUoESYHFMuk7t4qbxnOGOIfbV1vPIOi+/27iNQ/XNTCkcyE8/dzazzxpFblbP8/U6yU3Xs7dieS7p+HBJREREpLeUAItjYt0VOFnMnzWB+U9vobntxARG2RkmLuM5AyVFwbrWWmvZVH2Qco+Xl97ZhbWWqyaP5J6yEqaPG+TINEbRJG3hJvG9PU48RHMugSTTw6V43Au33m8RERFxHyXA4pi0ntqle+4YhylxgyVFC+dO6TKXbFNLG89Vbqfc4+XN7YcYkJfFFy4q4c4Liil0sFU12qQt0rG9bk4OYzVOOVkeLsXjXrj5fouIiIj7KAEWx6RS19VILF61leZW22VZc6t1PDnpKSnad7SRxzfUsGx9NXuPNHLqsL48NGcyc88ppE+O878KepO0RTI+1u3JYSzG+ibLw6V43Au3328RERFxFyXA4phYdfdMNolKToLt31dbz/ynt/D7LTtoamnjkgnDmFdWwkXjh5KREYem6R7ii/V1SZbksDeS5eFSPO5FOtxvERERiR3NAyyOCXcO21QTLAlxOjkp6JMd9LUX3tzJzaVj+dN9F7N03nlcfPqwuCa/EL/rkqjrH0/JMOcxxOdepMP9FhERkdhRAiyOmjOtEM+Cy6haNBvPgstSPvmF2CUnKyp9lC1aTcmClZQtWs2KSl/IdY82tAR87bNnj2b9/ZfzgzmTGT+8X0QxxFK8krZkSQ57I1keLsXjXqTD/RYREZHYURdokRiLRaGjSAv7LPzje12qTncYmJfFL26dFs1pxFysCkC55TiJlgzzBsfjXqTL/RYREZHYMNae/KU5FZSWltqKiopEhyESlbJFqwOO8SwsyD9e0dlay5qP9lHu8bL6/T0B92OAqkWznQxVRERERCQhjDGbrLWlkWyjFmARFwpV2Ke+qZXnKn0sXVvFB7uPMrRfLv3zsjgSoAt0b8dBan5VEREREUklSoBFXChYld++uVlcsOjP1NY1c+boAdx2XhF/2bqHfUdbMEDn/hy9HQep+VVFREREJNWoCJaICwUq7ANwrKmFC04ZwlP/cAFfuLCE5yp97DjUAPiT3466zrEoihRqflURERERkWSkFmARF7pmyig2VR/kd6/X0NxqMQYuOX0YP5gzmTGD+gBQ9uQbJyWolq7jhHtD86uKiIiISKpRAiziIvuPNvL4hhqWra9mz5FGThnWl3llJcydVkjf3K4fV6cT1GDdsDW/qnM05lpERETEWUqARVzgvZ2HKfdUseKNHTS1tPGp04fx4xuL+dRpw8jIMAG3cTpBnT9rQpcxwKD5VZ2kMdciEowejomIxI4SYElbif5C0dpm+fN7uyn3eFn3yX7yszP5XOkY7p5ZzPjh/Xvc3ukEVfOrxleoMdfJes0T/RkTSQV6OCYiEltKgCUtJfILxZGGZp6q2M7Da73UHKijsCCf+6+eyC3nFjGwT3bY+4lHgjpnWqG+YMVJqo251pd2kdhIxYdjIiKJpARY0lIivlBU7TvGw2u9PF2xjWNNrZxbPIgFV0/k05NGkJUZXUF2JaipI9XGXOtLu0hspNrDMRGRRIt7AmyMuReYD4wC3gG+Zq19Lci6c4EvAdOAPOBd4IfW2j/EKVxJUfH6QmGtZe3H+1myporVW/eQlWG49qzRzCsrYcqYgTE9liS3VBtzrS/tIrGRag/HREQSLa4JsDHmZuDnwL3Amva/XzTGTLLW1gTY5GJgNfAd4ABwO/CcMeaSYEmzSDic/kLR0NzKc5U+lnq8bN19hKH9cvjqZadxx/lFDO+fF5NjSGpJtTHX+tIuEhup9nBMRCTRjLU2fgczZgPwprX27zst+xB4xlp7f5j72Ai8Zq39Rqj1SktLbUVFRa/iTUfpUrSm+/hE8H+hWDh3Sq/Od+ehepatq+aJjTUcrGtm0qgB3HNhCdeePYrcrMxYhC6SFJz6jImko3T5v1lEJFLGmE3W2tJItolbC7AxJgeYDvyk20svAzMj2FV/4GCs4pIT0qloTaxb2zbXHKTc4+XFt3bSZi2fnjSSeWXFnFcyGGMCT2MkkspSrUVbJJFU70FEJHbi1gJsjBkN+ICLrbV/67T8u8Dt1toe+/IYY74CLAImW2urA7z+ReCLAEVFRdOrq09aRUIoW7Q6YJfFwoJ8PAsuS0BE7tbc2sYf39rJEo+XLdtq6Z+XxS3njuXOC4oZO7hPosMTEREREUlprm4B7i1jzA3AYuDmQMkvgLX2N8BvwN8FOo7hpQQVrQnPgWNNPL6hmmXrq9l9uJFThvbl+9edyQ3njKFvbtJ8pERERERE0k48v63vA1qBEd2WjwB2hdrQGHMj8Ahwp7X2eWfCExWt6ar7mKvbZxRRvb+OFW/4aGxp46LThrLohrO4+LRhZGRE181Z47pEREREROInbgmwtbbJGLMJuBJ4utNLVwLPBtvOGPM54GHgLmvtM85Gmd5UafKEQOOhf7xqK9mZhptKxzJvZjGnjegf82Ok6phrERERERE3iHd/zZ8Cy9orOXvwz/E7Gvg1gDHmEQBr7Z3tP98CLAO+CfzNGDOyfT9N1toDcY495alozQk/eun9Lg8COgztm8u/Xz+ly7JoW3EXr9p60jHqm1tZvGprWl5zkXSi3h8iIiKJEdcE2Fr7pDFmCP55fUcBbwPXdBrTW9Rtky/hj/Fn7X86/BW4xMlY01W6V5qs3n+MpWu97DzUEPD1XYe7Lu9NK67GXIukJ/X+EBERSZy4V+yx1v4K+FWQ1y4J9bOIE6y1rPt4P0s8Vfz5/T1kZRjyszMDtgB3Hw/dm1bcYGOuM4yhZMFKtQqJpCj1/hAREUkclawV1wmna2Asug82NLeyotLH0rVe3t91hCF9c/jqpeO54/xxrP14f1jjoXvTihtozDVAa/vUZOG2CiWiK2W0x1S3TxH1/hAREUkkJcDiKuF0Dext98FdhxpYtt7L4xtqOFjXzBmjBrD4xrO49uzR5GVndtlPT8labypndz9GhjHHk98OPbUKJaIrZbTHVLdPET9V3BcREUkcY21qTpdbWlpqKyoqEh2GRKhs0eqAXwwLC/LxLLgs7HUCqaw5SLnHyx/f2kmrtVx5xgjuubCEGSWDMSb6aYwCtRQvnDsl4qSuZMFKAn0aDVC1aHbAbaK9Fr0R7TETEauIG8Xy94aIiEg6M8ZsstaWRrKNWoDFVcLpGhhJ98Hm1jZefHsX5Z4qKmtq6Z+bxd0zi7lrZjFjB/fpdbzdW3EH5mdjDHz9yTdYvGprRF18o2kVSkRXymiPqW6fIn6quC8iIpI4SoATQOMggwsnCQxnnYPHmnh8Yw3L1lWz63ADJUP78r3PnkluVga/XP0R/7emKmbXvqNydm+7+EYzD3MiulJGe0x1+xQ5Id0r7ouIiCRKRqIDSDcdSZKvth7LiSRpRaUv0aG5wvxZE8hvH4fboXsSGGqdrbuOcP/yNzl/4Z9ZvGorp43ox5K7S/nzfRczMD+b7z3/rmPXPlRlV/Df+7JFqylZsJKyRatPOu6caYUsnDuFwoJ8DP6uwT11iQznesVatMdMRKwiIiIiIp2pBTjONP1FaOF0Dey+zqiBecw+axRPb9qG56P95GVnMPecMcwrK+b0Ef2Pb+f0tQ/VxTfc1uFIW4US0ZUy2mOq26eIiIiIJJqKYMVZNIWOJLCjjS08XbGNh9d68e6vY9TAPD5/wThuPbeIQX1zTlrf6WsfqsgToAJQIiIiIiIxpCJYSUDjIHuvZn8dS9d6ebpiG0caWzinqIBvzprArDNHkp0ZvFe/09c+1Bjerz/5RsBtVAAq9jTGXkRERESCUQIcZ9EUOhKw1rLuk/2Ue7z86b3dZBrDZ84axbyyEs4eWxDWPsK59r1JnkJ18V28aqsefMSB5hoWERERkVCUAMeZxkFGpqG5lT+8sYMlnire33WEwX1z+MdLx3PH+eMYMSAvon31dO1jkTwFG8OrBx/xoTH2IiIiIhKKEuAE0PQXPdt9uIFH11fz2IYaDhxrYuLI/vz4hrP47NTR5HWrJByJUNfeyeRJDz7iQ3MNi4iIiEgoSoDFVd7YVku5p4qVb+6k1VquOGME88qKueCUIRhjHD2208mTHnw4T2PsRURERCQUJcCScM2tbbz09i7KPVVsrqmlX24Wd15QzN0ziyka0iducSh5Sn7qai4iIiIioSgBloQ5eKyJJ16vYdm6anYeaqB4SB8evHYSN5aOpV9u/N+aSp6Sn7qai4iIiEgoSoAl7j7YfYRyj5fnKrfT0NzGheOH8tCcyVw6YTgZGc52cw5FyVNqUFdzEREREQlGCbDERVub5S8f7KHc4+W1D/eRm5XB3HMKuXtmCRNG9k90eMcpeRIRERERSV1KgMVRRxtbeHbTdpau9VK17xgjB+Qxf9YEbj2viMF9cxIdnoiIiIiIpBElwOKIbQfqWLrWy1Ovb+NIYwvTigr4xa3TuHrySLIzMwJus6LSp+7HIiIiIiLiGCXAEjPWWjZUHWDJmir+9N5uMozhmimjmFdWzLSiQSG3XVHp61KAyldbz/3L3wJQEiwiIiIiIjGhBFh6raG5lT9s2UG5x8t7Ow8zqE82914ynjvOH8fIgXlh7WPxqq1dqi8D1De3snjVViXAIiIiIiISE0qAJWp7Djfw6PpqHttQw/5jTUwc2Z8f3TCF66YWkpedGdG+dgSYfzfUchERERERkUgpAZaIvbm9lnKPlxfe3EFLm+XyiSO4p6yYC04dgjHRTWM0uiAfX4Bkd3RBfm/DFRERERERAZQAS5haWttY9c5ulniq2FR9kH65Wdxx/jjunlnMuCF9e73/+bMmdBkDDJCfncn8WRN6vW8RERERERFQAiw9qK1r4omN21i2zsuOQw2MG9KH735mEjeVjqF/XnbMjtMxzldVoEVERERExClKgCWgD3cfoXytl+Wbt9PQ3MbMU4fw/esmc+nE4WRmRNfNuSdzphUq4RUREREREccoAZbj2tosf/1gL0s8Vbz24T5yszK4flohd5cVM3HkgESHJ5JQmqdaREREJPkpARaONbbw7ObtLPV4+WTfMUYMyGX+rAncel4Rg/vmJDq8kygRkXjTPNUiIiIiqUEJcBrbdqCOR9Z5+d3r2zjS0MLUsQX8/JapXDNlFNmZGYkOLyAlIpIImqdaREREJDUoAU4z1lo2Vh1giaeKV97dTYYxXD1lFPPKijmnaFCiw+uREpHklqyt95qnWkRERCQ1KAFOEw3NrTy/ZQflHi/v7jzMoD7ZfOniU/n8BeMYNTB55tpVIpK8krn1XvNUi4iIiKQGJcApbs+RBh5dX8PjG6rZd7SJ00f0Y9HcKcyZVkhedmaiw4uYEpHklcyt95qnWkRERCQ1KAFOUW9tP0S5p4rn39xBS5vlsgnDuefCEmaeOgRjnJnGqCex6P4abiKSrF1tU1kyt95rnmoRERGR1KAEOIW0tLbx8ru7KfdU8br3IH1zMrl9xjjunllM8dC+CY0tVt1fw0lEkrmrbSpL9tZ7zVMtIiIikvyUAKeAQ3XN/O71Gh5ZV42vtp6iwX34t89M4qbSMQzIy050eEBsu7/2lIgkc1fbVKZuxCIiIiKSaEqAk9hHe45Q7vGyfLOP+uZWLjhlCA9cO4nLzxhBZkZiujkHE6ybq6+2nhWVvpgmpsnc1TaVqRuxiIiIiCSaEuAk09Zm+euHeyn3ePnbB3vJycpgztTRzCsr4YxRAxIdXlDBur8CMe+enOxdbVOZuhGLiIiISCIpAU4SxxpbWL55O+VrvXyy9xjD++fyzU+fzq3nFTGkX26iwwtpRaWPuqaWoK/HunuyutqKiIiIiEggSoBdbvvBOh5ZV83vNtZwuKGFs8cM5Oe3TOXqyaPIycpIdHg96l6QKphYdk9WV1sREREREQlECbALWWt53XuQck8Vq97ZhTGGqyePZF5ZCecUFSRsGqNoBCpIFUisuyerq62IiIiIiHSnBNhFGltaeWHLTpZ4qnhnx2EK+mTzDxefyufPHxdWgujGuW/DadlV92QREREREYkHJcAusPdII49tqObR9TXsO9rIacP78e/XT+H6aYXk52SGtQ+3zn0brCBVpjG0WRtxou7GJF9ERERERJKDEuAEett3iCWeKl7YspOm1jYumziceWXFXDh+aMTdnN06922wglQL506JOC63JvkiIiIiIpIclADHWUtrG6+8u5tyj5eN3gP0ycnkthlF3DWzmJKhfaPerxvmvg3VOhuLVlu3JvkiIiIiIpIclADHyaG6Zp6sqOHhtdX4ausZMyif78w+g8+dO5YBedm93n+i577tqXU2FgmqG5J8ERERERFJXkqAHfbx3qMs9Xh5ZtN26ptbOf+UwXz32klcccYIMjNiV8050XPfxqN1NtFJvoiIiIiIJDclwA6w1vK3D/exZE0Vf/1gLzlZGVx39mjmlZUwafQAR46Z6Llv49E6m+gkX3qmImUiIiIi4mZKgGOorqmF5Zt9lHuq+HjvMYb1z+W+K0/nthlFDO2X6/jxEzn3bTxaZxOd5EtoKlImIiIiIm6nBDgGfLX1PLLWyxMbazjc0MJZYwbys5uncs2UUeRkZSQ6vLiIV+tsJEm+WiPjS0XKRERERMTtlABHyVpLRfVByj1VrHpnNwBXTR7JPWXFnFM0KOJpjJKd21pn1RoZfypSJiIiIiJupwQ4Qo0trax8cyflHi9v+Q4xMD+bv7/oFO68YFzaF2NKZBfs7tQaGX8qUiYiIiIibqcEOEz7jjby2Poalq2vZt/RRsYP78cPr5/M9dMK6ZOjy+g2ao2MPxUpExERERG3U+bWg7d9hyj3eHl+yw6aWtu4dMIw7rmwhAvHD027bs7JRK2R8ee2bvAiIiIiIt0pAQ6gtc3yyru7WeKpYmPVAfrkZHLLeWO5a2Yxpw7rl+jwJAxqjUwMN3WDFxERERHpTglwJ4fqm3nq9W08vM7L9oP1jBmUz3dmn8FNpWMZmJ+d6PAkAmqNFBERERGR7pQAA5/sPcrStV6e2bSduqZWZpQM5juzJ3HlpBFkZqibc7JSa6SIiIiIiHSWtgmwtZbXPtxHuaeKV7fuJSczg89OHc28smLOHD0w0eGJiIiIiIhIjKVdAlzf1Mryyu2Ue7x8tOcow/rn8vUrTue2GUUM65+b6PBERERERETEIWmTAO+oreeRddU8sbGGQ/XNTCkcyE8/dzazzxpFblZmosMTERERERERh6V0AmytZXPNQZas8fLSO7uw1nLV5JHcU1bC9HGDNI2RiIiIiIhIGknZBLi2rpnr/tvDm9sPMSAviy9cVMKdFxRTqHlgRURERERE0lLKJsDbDtYxrrGFh+ZMZu45hfTJSdlTFRERERERkTCkbFZYPKQvr3z9YjI0jZGIiIiIiIgAGYkOwCn987KU/IqIiIiIiMhxKZsAi4iIiIiIiHSmBFhERERERETSghJgERERERERSQtKgEVERERERCQtKAEWERERERGRtKAEWERERERERNKCEmARERERERFJC8Zam+gYHGGM2QtUJzqOCAwF9iU6CAlJ9yg56D65n+5RctB9Sg66T+6ne5QcdJ/cL9A9GmetHRbJTlI2AU42xpgKa21pouOQ4HSPkoPuk/vpHiUH3afkoPvkfrpHyUH3yf1idY/UBVpERERERETSghJgERERERERSQtKgN3jN4kOQHqke5QcdJ/cT/coOeg+JQfdJ/fTPUoOuk/uF5N7pDHAIiIiIiIikhbUAiwiIiIiIiJpQQmwiIiIiIiIpAUlwHFijLnXGFNljGkwxmwyxlwUYt1RxpjHjTHvG2NajTFL4xhq2orwHs01xrxsjNlrjDlijNlgjPlsPONNVxHep4uNMWuNMfuNMfXtn6lvxjPedBTJPeq23YXGmBZjzNtOxygRf5YuMcbYAH8mxjPmdBPpZ8kYk2OM+X77No3GmBpjzD/FK950FeFnaWmQz9KxeMacbqL4LN1mjHnDGFNnjNlljHnUGDMyXvGmqyju01eMMe+1f8fbaoy5M5zjKAGOA2PMzcDPgX8HpgFrgReNMUVBNsnFP8nzImBDXIJMc1Hco4uB1cDs9vX/CDwX7hd9iU4U9+ko8AvgU8Ak4CHge8aYe+MQblqK4h51bDcIeAT4s+NBStT3CTgTGNXpz4dOxpnOorxHvwOuAr4ITABuAt50ONS0FsV9+me6foZGAZ8ATzkfbXqK9B4ZY8qAZcDD+H/nzcH/HeKxeMSbrqK4T18GfgR8H/99egD4b2PMtT0eS0WwnGeM2QC8aa39+07LPgSesdbe38O2LwD7rLV3OxtleuvNPeq0/kbgNWvtNxwKM+3F6D4tBxqttbc6FGZai/Yetd+XLYABbrTWTnY82DQW6X0yxlwCvAoMs9bui1ec6SyKe/Rp4GngVN2j+Ont/0vtydYaoMxau9a5SNNXFJ+lbwJftdaO67RsHvBLa22/eMScjqK4T2uBDdbar3da9h/ADGvthaGOpRZghxljcoDpwMvdXnoZmBn/iKS7GN6j/sDBWMUlXcXiPhljprWv+9fYRicQ/T1qb5Efgb+FXhzWy89ShTFmpzHmz8aYSx0JUKK9R3OA14H7jDHbjTEfGmN+YYzRF3aHxOj7w98D7yj5dUaU98gDjDLGXGv8hgK34O/tJw6I8j7lAg3dltUD5xljskMdTwmw84YCmcDubst3AxpL4A69vkfGmK8AY/B3mRFnRH2f2r8MNgIVwK+stb92JsS0F/E9MsZMwd9t6Q5rbauz4Um7aD5LO4EvAzcAc4GtwJ817MMx0dyjU4ALgbPx36d/xN8deqkzIQq9/P5gjBkIfA74bexDk3YR3yNr7Tr8Ce9jQBOwF3/vpLucCzPtRfNZWgXcY4w5t/1BRSnwBSC7fX9BZfUyWJG0Z4y5AVgM3GytrU50PBLQRUA/4HzgR8aYKmutHlYkmDEmF3gS+Ka1tirR8Uhw1tqt+JPeDuuMMcXAfOC1hAQl3WUAFrjNWnsIwBjzj8AqY8wIa233L5aSeHfgv2/6/8hFjDGTgF8CP8CfZI3C/z3vf4CwiixJXPwAf3K8Fv8Dit34x21/C2gLtaFagJ23D2jF372vsxHArviHIwFEfY+MMTfi/4/rTmvt886EJ+2ivk/W2ipr7VvW2t8CPwUedCRCifQejQLOAMqNv/pzC/Bd4Mz2nz/taLTpK1b/L20ATotVUNJFNPdoJ+DrSH7bvdf+d0/FzSQ6vf0s/T3wrLX2QKwDk+OiuUf3AxuttYuttW9aa1cB9wKfN8aMcS7UtBbxfbLW1ltr7wH6AMX4f895gSP4W+2DUgLsMGttE7AJuLLbS1fif2IhCRbtPTLGfA5/8nu3tfYZ5yIUiOlnKQP/uBGJsSjukQ+YAkzt9OfXwEft/9bvSAfE8LM0FX/SJTEW5T3yAKO7jfk9vf1v9U5yQG8+S8aY8/B3V1f3ZwdFeY/64E/GOuv4WbmTA3rzWbLWNltrt7cPo7oFeMFaG7IFWF2g4+OnwLL2KsEe4EvAaPxf9DDGPAJgrT3ercIYM7X9nwOAtvafm6y178Yv7LQS0T0yxtyCP/n9JvC3TnPDNelJrqMivU9fBao40XXzU/jv2a/iG3ZaCfseWWubgS5z/hpj9uCv0q25gJ0V6Wfpa/ifrL8D5ODvujkH/1hTcUak3x0eB/4Nf4+KB4EC/FOKPGOt3RPXyNNLxN/x2n0R+NBa+5f4hZq2Ir1HzwO/bZ9mp6ML9M+AzdbamviGnlYi/X/pdGAGsB4YBNwHTCaMsdpKgOPAWvukMWYI8B38H6K3gWs6jRcN1DWpstvP1+J/glvsVJzpLIp79CX8n5+ftf/p8FfgEidjTWdR3KdM/HPEFQMtwMfAAtp/mUrsRfn7TuIsivuUg38M3Bj8VTbfAWZba1UV1SGR3iNr7VFjzBX4xy6+jn9WghX4f+eJQ6L5nWeM6Y+/per7cQs0jUXxWVrafo/+EfgP4BCwGvh2/KJOP1F+x7sP/5znzfin6ptprfX2dCzNAywiIiIiIiJpQf3YRUREREREJC0oARYREREREZG0oARYRERERERE0oISYBEREREREUkLSoBFREREREQkLSgBFhERERERkbSgBFhERCQKxpilxpgX4ni8ocYYa4y5xOHj/MUY819OHkNERCRRlACLiIgE0Z7k2gB/pgL/DNzRad2TEkdjzCXt6w+Nc+giIiISQFaiAxAREXG5PwGf77Zsn7W2JRHBiIiISPTUAiwiIhJao7V2V7c/LZ27QBtjlgIXA1/p1EpcDLzavo+97cuWtq9vjDHfMsZ8bIypN8a8ZYy5o/NBjTHnGmM2GWMajDGVwIxQQRpjvmiM2W2Myey2/HFjzB/a/32qMeb3xphdxphjxpjNxpjP9LBfrzHmm92WdWntNsbkGGN+ZIzZboypM8a8boyZ1en1bGPML4wxO4wxjcaYbcaYRaGOKyIi4gQlwCIiIr33z8A6oBwY1f5nG3BD++tnti/75/afHwL+DvgKMAlYCPyPMWY2gDGmH7AS+AQoBRYAP+khhqeBgcCVHQva93Md8Gj7on7Ai+3rnA08Cyw3xkyM4pw7K8f/AOA2YDLwMPC8Mebs9tf/CbgeuAU4DbgZ2NrLY4qIiERMXaBFRERCu8oYc7TTz69Za6/uvIK19pAxpgmos9bu6lhujDnQ/s891tp97cv6AvcBn7bWvtb+epUx5jz8CfFK/IlkDjDPWnsUeNsY80NgWbAgrbUHjTF/BG4HXmpfPAdoAf7Qvs4WYEunzX5ojLkWuBF/Uh4xY8ypwK1AsbW2pn3xfxljrgD+AbgXGAd8gP/aWaAGWBvN8URERHpDCbCIiEhofwO+2Onn+l7ubxKQB7xkjLGdlmcD3vZ/nwG82Z78dlgXxr4fBR42xvSx1tbhT4aftdY2wPHk+wHgM/hbpLPbY3kz+tPhHMAA7xpjOi/PBVa3/3sp8ArwgTHmZeCPwIvW2rZeHFdERCRiSoBFRERCq7PWfhTD/XUMP7oWf0toZ8293PdK/C2+1xlj/gxcAczq9PpPgKuAbwIfAnXAI/hbm4Npw5/gdpbd6d8ZgAXO5eT46wGstZvbx0TPAi7H30V6izHmSiXBIiIST0qARUREYqMJyAywjG7L3wUagXHW2tUE9h5wtzGmr7X2WPuy83sKwFrbaIx5Gn/L71BgF/CXTqtcCDxirX0WwBiTB5yKv3tyMHvxtxbTaZuJQGX7okr8CfJIa+2rJ29+PLYjwDPAM+3FwNYD43s4toiISEwpARYREYkNL3Bee0vnUeAAUI2/dXS2MeZ5oN5ae8QY8xPgJ8bfZ/hv+ItTnQ+0WWt/AzwO/BBYYoz5PjAa+Ncw43gU+DNQAjzRrYX1A+B6Y8zv8bfWPoC/C3Qoq4F72itJ722P4/j3B2vtB8aYx4ClxphvAJuBwcAlwCfW2uXGmPuAncAb7ce9DTgMbA/znERERGJCVaBFRERi4yf4W3zfxZ8oFllrffiTzB8Cu4GOqYP+DXgQf1fkd/CPj70BqAJoH/v7GfwVkze37/vbYcbxGuDDP9b40W6v3QfsaV/nRfytsK8R2kL8SfDvgZeBNZxo/e0wD38l6B8D7wMvAJ/C/wAA4AgwH9jYfj5TgavbxymLiIjEjfEXYxQRERERERFJbWoBFhERERERkbSgBFhERERERETSghJgERERERERSQtKgEVERERERCQtKAEWERERERGRtKAEWERERERERNKCEmARERERERFJC0qARUREREREJC0oARYREREREZG08P8B1WULyQ55KycAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.scatter(yhat, y)\n", "line_fit = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit()\n", "abline_plot(model_results=line_fit, ax=ax)\n", "\n", "\n", "ax.set_title('Model Fit Plot')\n", "ax.set_ylabel('Observed values')\n", "ax.set_xlabel('Fitted values');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot yhat vs. Pearson residuals:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:25.840589Z", "iopub.status.busy": "2022-05-09T08:26:25.840399Z", "iopub.status.idle": "2022-05-09T08:26:26.041311Z", "shell.execute_reply": "2022-05-09T08:26:26.040486Z" } }, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'Fitted values')" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAH8CAYAAAAEzSbqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABbTUlEQVR4nO3de7xcZX3v8e8vm41sQNlaEM2uXLxFRQrR1FusCorxSKUpeqqtl1JrqdiK19TE2hKsnkSD9dIej6JVULxLzq4KGqqBqlGwgQ0EL6Eqgk5EgrA5QDawk/zOH2sNmUzWzKyZWZdnrfm8X6957T1rbs+sWTPr+T2/52LuLgAAAAAAsLcFZRcAAAAAAIAQETADAAAAAJCAgBkAAAAAgAQEzAAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJCJgBAJViZqvNLNWaiGb2CzM7L5TyjBozczNbXXY5imJml5nZZWWXAwCQHQJmAMBAzOy0OCBqXnaaWcPMzjOzqbLLF5qE/XWPmW0zsw1mdqaZPbDsMiJZ3PDS+tndZWZXmNmrMnyNt5vZ8qyeDwCQjf3KLgAAoPJWS/qZpAMkPU3SaZKeaWZPdPd7cni9d0lam8PzFmW1ov01Lulhkp4j6QOS3mxmp7j7taWVDN1cK2ld/P9CSadLOt/MDnT3j2Tw/G+X9GVJ0xk8FwAgIwTMAIBhbXD3y+P/P25mt0p6m6RTJH0x6xdz952Sdmb9vAVq3V+StMbMTpT0NUlfMbPHu/tcSWVDZ7929wuaV8zsU5J+KulNkrIImAEAAaJLNgAga9+J/z6qdaOZPdbMvmhmv427I8+Y2Uva7rOfmb3DzK43szkzuy3u+npqy332GTNskXeY2a/MbIeZXWpmx7QXrNN445bu0ke1bDvFzL4aP+e9Znajma0zswMG2y2duftGSf8k6UhJr2grW5r91iz/CWb2r2Z2q5ndGT/u8IT3+/tmdrGZ3RHv5++a2Qlt91kdP+eiuJv9bHz/T5rZgW33fYCZvd/Mtsev+xUz+92k92pmDzezj5vZzfF+/bGZndF2n+fEr/2ncVflX8Xv/Vtm9uiE51wSf1a3xZ//dWa2qt/92A93v1nSjyUd3e1+ZnZgfNzcFL/f/zazlWa2oOU+LukgSX/e0u37skHLBgDIDhlmAEDWjor/3t7cYGaPl/Q9STdLeq+kuyT9saQvmdkrWzJ3Z0n6e0n/JukHioKIxZKeIml9l9d8p6R3SLo4vhwvaYOkBwzxPv5C0r2SPiTpDkXdzd8k6RGSXjbE83byaUn/S9LzJX1M6mu/NX1Q0t2K9seRkl4vaZGZ/b673xc/57MV7Zur4/vNS3qlpEvM7CR3v6ztOT8v6eeSVkl6kqTXSLpFUS+Cpo8rCvQ/G5f3OZIuan+DZvZQSZdLGpP04fh5nivpw2b2O+7+rraH/J2kXZLOkXRIfP0zkp7a8pzPjV/rFkn/ImmbpEWKejisGXA/9mRm44qOhd92uY8p6mJ9kqRPSLoyfr9rFH1PXhvf9ZWK9uEPJJ0bb/tNv2UCAOTA3blw4cKFC5e+L4rGKrukZZIOlfS7kl6sKHC5R9Lvttz3Ekk/lDTR9hyXSPqVJIuvz0j6Wo/XXR2dvu6/fpiiwPZrzeeJt78zLt95nR6b8F6Oatl2YML93i5pt6RH9HrOLq/xtC73mZV01QD7rfnc10p6QMv9Xh1vf0183ST9RNI32/bV/vHrfK/9fUn6RNtrr5d0a8v14+L7fbjtfp+Kt69u2XauoqD1sLb7fkzSDkmT8fXnxI/9saT9W+53Zrz9ifH1BYrGg/9S0kPantPa9lfP/djlc/mFpG8pOs4PlfR7kj4Xl+VDLfe7TNJlLddPie9zVtvzfbL1fcTb7lLLscqFCxcuXMK40CUbADCsb0jariho+bKiiv8p7v4rSTKzh0h6nqLxzAeZ2aHNS/zYKUmPjZ/rDknHmNljld7zFAV8H3b31u7WHxriPcndd8TlX2Bmh8Tl/a6ioPNJwzx3F3dJemD8uv3st6aPuvu9Ldc/pSgI/8P4+nGKsq+flfQ7Lc/3IEn/Iemp7d2tFWe7W3wnfuyD4usvjP/+a9v99tr/cbb1JYqywd72fi6RNKGWzHGz/B5nxlteW5IeGf99Uvz/B939ttYHNo+FAfdjkhMVHefbJV2jqHHo/2jvTHu7kxU1sHywbfv7Wm4HAASMLtkAgGGdqSgTeIiiTOezJLVOWvVoRUHm6viS5KGStkr6R0VdWLea2Y8UdR3+rLtv7vL6R8Z//7t1o7vfama3J9w/FTN7oqLuu89RFMy1OmTQ5+3hYEUZeqm//dbUvg92mtkN2tNNvhkY/luXMvyOomxv001ttzf36YMl/T9F+98VTYDV6vq264fFj3l1fEny0Lbr3V5b2jNO/roOzycNth+TbFbULd0VBc0/d/e7ejzmSEm/cffZtu1bFQXSR/V4PACgZATMAIBh/ZfHsz6b2bSk/5T0OTNb5O53a88Ek+9XNL44yXWS5O7fNrNHSXqRorG8r5L0RjNb6e7vzaCs+0z4FRtrvWJmh0i6VNF44L9XFAzOKcpGnqccJs2MJ8k6RHsCz9T7rQ/N51ypaDxtku1t13d1uJ8N+NqfUzSeN8kPc3jtrPbjb939m328LgCgBgiYAQCZcfddZrZSUdfZ1ytaL/nn8c070wQc7n67oq7EnzKzCUVBztlm9j53Twqgboz/PkYtGda4y+2D2+57e3zbZFvW78i2+52gaKzqS9z9P1ue86Re5R/CK+O/G+K/fe232GMUdW+WFM06rmgW5+Z7+Fn8984Mg78bFQWwj5b0o5bt7d2ct0u6U9J+Gb528/08UVH36iSD7Mes3CjpJDM7xN3vaNn+WEWB/C9atnVqzAEAlIgxzACATLn7dyV9X1Fm+AB3v0VRtvavzGyq/f5mdljL/7/T9lxziiapOkD7dotu+qaimZ5fF4+TbToz4b7NAOtZLa95kKQ/b7tfMzC3lvstkPTmDmUYikXrMP+DpBsUzQKtfvZbi782s9aZwV8laVJ7Zqy+UlEG+81m9sCUz9nL1+O/f9u2/fWtV+LGji9LWm5mx2X02lcpCojfEI9Vbn0+i193kP2Yla8pqmu1H4vN46h1JvG7tW8DDwCgZGSYAQB5OEfShYrGqn5Y0hmSNkm61sw+pihwfaiiSZ6eoCg7KUk/NrNvS/ovSbcqmqTqNYpmzk4cL+ru283sHEXjS79mZhfHj3th/BytLlE0LvbfzGydosD41Yqyn0e03G+TouWCzjezf1EUkL9E0RjjYS2L1xLeT9LhiiaTOklRNvIUd7+n5b5p91urS83sc4rGx75eUXfj8yXJ3Xeb2V8qysb+yMw+oWiW6IWSnq2ogeCEhOfsyN2vjl/vjLgr+6b4OZIm0lqpaEz49+P380NFQeLxipZ56muN6/j9vFZR4Hl1/H62KdovS+OLNNh+zMLXFE2mdraZHakowD9R0YRhH3X31q7gmyU9z8zequgzucWj9bkBACUiYAYA5GFaUSZzhZmd6+5bzWyJonWWX6Wou3NztuF/aHncBxQtxXOioozyLxV1635Pj9d7h6KlrF6rKFi7QtFyV3utBezu82b2x4qC+H9StMTRBxR11f5ky/1uM7OTFc1mfLai2asvVDQr8rWp90Ky1fHf+yTdJmmLpDdK+qS739lW3rT7rekNigL7sxQFn1+R9PrWmabjceJPix//OkUzZN+sqJHi4wO+p2ajw8sl/ZGkjYpmgP5l2/u5xcyeGr/2ckWB7G2KJo17yyAv7O7/Ea8tfZaizO2YoqzzBS336Xc/ZsLdPT7ezla0dverFDXYvF3RhHKt3iTpo4qOj4MUdaMnYAaAkjXXbwQAABVlZqcpCvif3pyADQAADI8xzAAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJGMMMAAAAAEACMswAAAAAACQY2WWlDj30UD/qqKPKLgYAAAAAIGNXXnnlre5+2LDPM7IB81FHHaXNmzeXXQwAAAAAQMbM7MYsnocu2QAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJCJgBAAAAAEhAwAwAAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAEBMwAAAAAACQgYAYAAAAAIAEBMwAAAAAACQiYAQAAAABIQMAMAAAAAEACAmYAAAAAABIQMAMAAAAAkGC/sgsAAHU3PdPQug1btW12TgsnJ7Ri2SItXzxVdrEAAADQAwEzAORoeqahVeu3aG5+lySpMTunVeu3SBJBMwAAQODokg0AOVq3Yev9wXLT3PwurduwtaQSAQAAIC0CZgDI0bbZub62AwAAIBwEzACQo4WTE31tBwAAQDgImAEgRyuWLdLE+Nhe2ybGx7Ri2aKSSgQAAIC0mPQLAHLUnNiLWbIBAACqh4AZAHK2fPEUATIAAEAF0SUbAAAAAIAEBMwAAAAAACQINmA2s2eZ2VfMrGFmbmantd1+Xry99XJ5ScUFAAAAANRMsAGzpIMlXSfpDZI6LVj6TUkPb7m8sJiiAQAAAADqLthJv9z9YkkXS1E2ucPd7nX3mwsrFAAAAABgZIScYU7jmWZ2i5ldb2YfM7OHll0gAAAAAEA9VDlg/oakV0l6rqS3SHqKpI1m9oBODzCz081ss5lt3r59e0HFBAAAAABUUbBdsntx98+3XN1iZldKulHSyZLWd3jMuZLOlaQlS5Z47oUEAAAAAFRWlTPMe3H3bZJ+JekxZZcFAAAAAFB9tQmYzexQSVOSfl12WQAAAAAA1Rdsl2wzO1jSo+OrCyQdYWbHS7otvqyWdKGiAPkoSWsk3SLp/xZcVAAAAABADYWcYV4iaSa+TEg6O/7/nZJ2STpW0r9Lul7S+ZK2Snq6u99ZSmkBAAAAALUSbIbZ3S+TZF3usqygogAAAAAARlDIGWYAAAAAAEpDwAwAAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAEBMwAAAAAACQgYAYAAAAAIAEBMwAAAAAACQiYAQAAAABIQMAMAAAAAEACAmYAAAAAABIQMAMAAAAAkICAGQAAAACABATMAAAAAAAkIGAGAAAAACABATMAAAAAAAkImAEAAAAASEDADAAAAABAAgJmAAAAAAASEDADAAAAAJCAgBkAAAAAgAQEzAAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJCJgBAAAAAEhAwAwAAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAEBMwAAAAAACQgYAYAAAAAIAEBMwAAAAAACQiYAQAAAABIQMAMAAAAAEACAmYAAAAAABIQMAMAAAAAkICAGQAAAACABATMAAAAAAAkIGAGAAAAACABATMAAAAAAAn2K7sAAAAAQFVNzzS0bsNWbZud08LJCa1YtkjLF0+VXSwAGSFgBgAAAAYwPdPQqvVbNDe/S5LUmJ3TqvVbJImgGagJumQDAAAAA1i3Yev9wXLT3PwurduwtaQSAcgaATMAAAAwgG2zc31tB1A9BMwAAADAABZOTvS1HUD1EDADAAAAA1ixbJEmxsf22jYxPqYVyxaVVCIAWWPSLwAAAGAAzYm9mCUbqC8CZgAAAGBAyxdPESADNUaXbAAAAAAAEpBhBgIzPdOgaxcAAAAQAAJmICDTMw2tWr/l/jUdG7NzWrV+iyQRNAMAAAAFo0s2EJB1G7beHyw3zc3v0roNW0sqEQAAADC6CJiBgGybnetrOwAAAID8EDADAVk4OdHXdgAAAAD5IWAGArJi2SJNjI/ttW1ifEwrli0qqUQAAADA6GLSLyAgzYm9mCUbAAAAKB8BMxCY5YunCJABAACAANAlGwAAAACABATMAAAAAAAkIGAGAAAAACABATMAAAAAAAkImAEAAAAASEDADAAAAABAAgJmAAAAAAASEDADAAAAAJCAgBkAAAAAgAT7lV0AAACqZHqmoXUbtmrb7JwWTk5oxbJFWr54quxiAQCAHBAwAwCQ0vRMQ6vWb9Hc/C5JUmN2TqvWb5EkgmYAAGoo6C7ZZvYsM/uKmTXMzM3stLbbzcxWm9k2M5szs8vM7JiSigsAqLl1G7beHyw3zc3v0roNW0sqEQAAyFPQAbOkgyVdJ+kNkuYSbv87SW+R9HpJvy/pFkn/YWYPLKyEAICRsW026VTUeTsAAKi2oANmd7/Y3d/u7l+WtLv1NjMzSW+UtNbdL3T36yT9uaQHSvqzwgsLAKi9hZMTfW0HAADVFnTA3MPRkh4m6ZLmBnefk/RtSc8oq1AAgPpasWyRJsbH9to2MT6mFcsWlVQiAACQpypP+vWw+O9v2rb/RhIzrwAAMtec2ItZsgEAGA1VDpj7ZmanSzpdko444oiSSwMAqKLli6cIkAEAGBFVDphvjv8eLummlu2Ht9y2F3c/V9K5krRkyRLPtXQIBmumAgAAABhElccw36AoMD6pucHMDpD0B5K+V1ahEJbmmqmN2Tm59qyZOj3TKLtoAAAAAAIXdMBsZgeb2fFmdryish4RXz/C3V3SByS9zcxONbMnSjpP0l2SPltWmREW1kwFAAAAMKjQu2QvkXRpy/Wz48v5kk6T9F5JE5L+t6QHS7pC0vPd/c5ii4lQsWYqAAAAgEEFHTC7+2WSrMvtLml1fAH2sXByQo2E4Jg1UwEAAAD0EnSXbGBYrJkKAAAAYFBBZ5iBYbFmKgAAAIBBETCj9lgzFQCAMLH0I4DQETADAACgcM2lH5urWTSXfpRE0AwgGIxhBgAAQOFY+hFAFRAwAwAAoHAs/QigCgiYAQAAULhOSzyy9COAkBAwAwAAoHAs/QigCpj0CwAAAIVj6UcAVUDADAAAgFKw9COA0NElGwAAAACABATMAAAAAAAkIGAGAAAAACABATMAAAAAAAkImAEAAAAASMAs2QCA+03PNFjiBQAAIEbADACQFAXLq9Zv0dz8LklSY3ZOq9ZvkSSCZgAAMJLokg0AkCSt27D1/mC5aW5+l9Zt2FpSiQAAAMpFwAwAkCRtm53razsAAEDdETADACRJCycn+toOAABQdwTMAABJ0oplizQxPrbXtonxMa1YtqikEgEAAJSLSb8AAJL2TOzFLNkAAAARAmYAwP2WL54iQAYAAIjRJRsAAAAAgAQEzAAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJCJgBAAAAAEhAwAwAAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAE+5VdAAAAAIyu6ZmG1m3Yqm2zc1o4OaEVyxZp+eKpsosFAJIImAEAAFCS6ZmGVq3forn5XZKkxuycVq3fIkkEzQCCQMAMAACAgQybHV63Yev9wXLT3PwurduwlYAZQBAImAEAANC3LLLD22bn+toOAEVj0i8AAAD0rVt2OK2FkxN9bQeAohEwAwAAoG9ZZIdXLFukifGxvbZNjI9pxbJFQ5UNALKSKmA2s8PM7LCW68ea2bvM7E/zKxoAAABClUV2ePniKa059VhNTU7IJE1NTmjNqccyfhlAMNKOYf6ipE9L+oSZHSrp25K2SXq9mS109/flVUAAqAOWTQFQNyuWLdprDLM0WHZ4+eIpfg8BBCttl+zfk3R5/P9LJP3U3Y+R9CpJf51HwQCgLpoT4zRm5+TaMzHO9Eyj7KIBwMDIDgMYBWkzzBOS7or/f56kr8T/XyXpEVkXCgDqhGVTANQV2WEAdZc2w/zfkk41s0dIer6kS+Lth0uazaFcAFAbLJsCAABQTWkD5rMlvUfSLyRd7u5XxNuXSZrJoVwAUBssmwIAAFBNqQJmd18v6QhJSyS9oOWmb0p6cw7lAoDaYNkUAACAako7hlnu/htJv2nbdkWHuwMAYs3xfcySDQAAUC0dA2Yz+1DaJ3H3M7MpDgDUExPjAAAAVE+3DPOxKZ/DsygIMCzWuQUAYA/OiwAwvI4Bs7ufUGRBgGE017ltLt3TXOdWEpUDAMDI4bwIANlIO0s2ELRu69wCQB1NzzS0dO1GHb3yIi1du1HTM42yi4SAcF4EgGyknvTLzB4r6SWKZsvev/U2d391xuUC+sI6twBGCdlD9MJ5EQCykSrDbGYnS7pW0oskvVrSIkkvlPTHkg7NrXRASqxzC2CUkD1EL5wXASAbabtkv1PS2e7+dEn3SnqlpKMUrcN8WS4lA/rAOrcARgnZQ/TCeREAspE2YF4k6Qvx//OSDnT3exQF0m/MoVxAX5YvntKaU4/V1OSETNLU5ITWnHosXRMB1BLZQ/TCeREAspF2DPOdkg6I//+1pEdLui5+/INzKBfQN9a5BTAqVixbtNcYZonsIfbFeREAhpc2YL5C0jMl/UjSRZLeZ2bHKRrD/P2cygYAABI0gyDW2AUAIF9pA+Y3Szo4/n+1pAdKerGk6+PbAABAgcgeAgCQv1QBs7v/vOX/HZLOyK1EAAAAAAAEIO2kXwAAAAAAjJRUGWYzu1OSd7rd3R+UWYkA1Mb0TIMxlgAAAKistGOY/7bt+rikxYrGMb870xIBqIXpmcZes/g2Zue0av0WSSJoBlBLNBICQP2kHcN8ftJ2M7tK0nMl/UuWhQJQfes2bN1ryRtJmpvfpXUbtlKBBFA7NBICQD0NO4b5UkkvyqIgAOpl2+xcX9sBoMq6NRICAKorbZfsTl4m6dYsCgKgXhZOTqiREBwvnJwooTQYdXSVRd5oJASAeko76dcW7T3pl0k6XNJDxBJTABKsWLZor+6JkjQxPqYVyxaVWCqMIrrK9ofGhcHQSAgA9ZQ2w/zltuu7JW2XdJm7/yTbIgGog2YFm4o3ysZ4+vRoXBgcjYQAUE9pJ/06O++CAKif5YunqGSjdHSVTY/GhcHRSAgA9TTsGGYAGEl0W60OusqmR+PC4PhNAIB66jhLtpntNrNdaS5FFhiokumZhpau3aijV16kpWs3anqmUXaRkIFmt9XG7Jxce7qt8vmGacWyRZoYH9trG11lk3VqRKBxoTt+EwCgvrotK/UnLZfXS7pd0ick/VV8+YSk2+LbSmFmq83M2y43l1UeoBUVqPpi+ZhqWb54SmtOPVZTkxMySVOTE1pz6rFk/xJUpXEhtMZIfhMAoL46dsl29/sn+jKzr0ha5e4fa7nLJ8zsB5KWS/pwbiXsbauk57RcJ+ONIDAWsL7otlo9jKdPpwrjcEOcmIzfBNQVQw2A9GOYT5T05oTtl0r6QGalGcxOdyerjOBQgaovxsSizkJvXAixMZLfBNRRiI1TQBm6dcludauklyRsf4mi5aXK9Egz22ZmN5jZ583skSWXB5DEWMA6q0q3VaCOkgJTqdzGSH4TUEcMNQAiaTPM/yjpk2Z2gqTvx9ueJul5kv4yj4KldIWk0yT9RNJDJb1D0vfM7Bh3/237nc3sdEmnS9IRRxxRYDExiliTs76q0G0VqKPpmYZMkifcVmZjJL8JqCN6ygERc0867STc0eypks6U9Ph4048lfcjdr8ipbH0zs4Ml/VzSWnf/5273XbJkiW/evLmYgmFktY/9OeFxh+nSn2wvrULFWCQAVbZ07cbEDLNJev9Lj+f3DMhQp+/b1OSENq08sYQSAf0xsyvdfcmwz5N6HeY4MH75sC+YJ3e/y8x+KOkxZZcFkPYeC1j2WKCyXx9Ig0YddNMps+XidwzIGj3lgEi3dZgf0vp/t0sxRe3NzA6Q9DhJvy67LEC7sscClf36QC95L8UW2lJE6F+nbtdTzA0BZI4l+YBItwzzdjN7uLvfomjSr6S+282hRGMJt+XOzM6R9FVJNykaw/wPkg6SdH4Z5QG6KXssUNmvD/SS5+zH9LCoBzJeQLFCnzUfKEK3gPlESbfF/59QQFkG8buSPifpUEWzdV8u6WnufmOppQISlL3sSNmvD/SSZ6NOiEsRoX9MrgUAKFrHgNnd/zPp/5C4+8vKLgOQVtmZkbJfH+glz0YdeljUBxkvAECRUq3DbGZPMLNFLddPMrMLzGyVmZXSHRuomrLHApX9+kAvea5ly7roqAPG4QNA8VItK2Vml0v6gLt/3sweIWmrpMsk/Z6kT7v7qlxLmQOWlQKA8OQ1S3b7GGYpCsZHodGImceLxTE8uviuAWHJalmptAHzrKSnuPv1ZvYmSae4+wlmdoKkT7r7UcMWpGgEzAAwWkaxMttPkDWK+ydreQa1rIkbNho0gPAUvQ7zmKT74v+fK+ni+P+fSTp82EIAAJC3URz7mnayM2YRz0aek8sxDj9sTCwI1FeqMcySrpN0hpn9gaKA+Rvx9ilFS04BAIDApA2yWKc9G3kGtYzDDxsNGkB9pQ2Y3ybprxSNW/6cu2+Jt58i6Qc5lAsAAAwpbZBFZT8beQa1eU6K147JxfpHgwZQX6kCZnf/tqTDJB3q7q9uuemjks7Io2AAAGA4aYMsKvvZyDOozWOlg6TAuNk9vzE7J9ee7vkEzd0V2aABoFipJv26/85mh0p6lKSr3f3e3EpVACb9AjDKmOBpdKT5rJmwKDtV+W51+swPGF+g23fM73N/JhfrrSqfPTAqip4l+4GSPiHpxZJc0mPc/edm9hFJN7v76mELUjQCZgCjplmZa8zOyRT9mDcRHIHK/mjpNOt2JybphrUn51cgAMhY0bNkv0fSQklPkvTdlu1fk/RuSauHLQiAfFAJhrRvNqm9qZTZXDGKs4iPsn7Hp9M9H8CoSjvp1ymS3ujuV2vvetaPJT0y60IByAZj0dCUNAtyOyZ4AkZHpwB4cmKcsbgA0CJtwPxgSb9N2P5ASd1rYABKw1IxaEoTDJNBAkZHp0mqVp9yTOaTiwFAlaXtkv1firLMH4ivN7PMfy3pexmXCUBGWCoGTQsnJ7qOVySDFB6GUyBPzWOp0zHGsQYAkbQB89slbTCzY+LHvDn+/ymSnpVX4QAMp1OQVNdMIgFGZyuWLdpnRtzmxF9T7KvgtI85bw6nkAhkkB3GrQNAb6kCZnf/npk9Q9JbJf1M0nMlXSXp6e6+JcfyARhCUpBU10wiAUZ3vbJJSKeoRpluwyn4zAAAKE7aDLPiwPjP27eb2cvc/fOZlgpAJkYpSCLA6I1s0nCKbJRhOEW2Qux9EmKZAAD76hkwm9l+khZJmnf361u2L5f0zvg2AmYgUKMSJBFgIG9FNsqM2nCKPIXY+yTEMgEAknWdJdvMniDpeknXSvqxma03s4ea2UZJ50m6RNKjcy8lAPTQKZAgwEBW0jbKTM80tHTtRh298iItXbtxoGXcOs1gXKfhFFnspzRCXC0gxDIBAJL1yjCvlXSDpDMlvVzSSyU9QdJnJf2Ru9+Zb/EAIJ1RGq+NcqTJ+maVOaz7cIpR794eYpmAOmLoA7LQK2B+iqQXuvtVZvZdRQHzOe7+8fyLBgDp1T3AaOLkX540jTJZdtuu83CKUe/eHmKZwO9r3TD0AVnpFTA/VFJDktx91sx2SPp27qUCgA66VWjqHGBInPzLlqZRhsxhOkXupxB7n4RYplFXp99XAv8Ik4EiK70CZpe0u+X6bknz+RUHADorskITYoWDk3/5ejXKHDIxrtm5fU+Th0yM51msyikywxpi75MQyzTq6vL7WqfAf1g0YCIrvQJmk/RzM/P4+sGSrm25Lkly9wflUTigaCEGSdijqApNqBUOTv7hM+tv+6gqOsMaYu+TEMs0yury+1qXwD8LDH1AVnoFzH9RSClQeXUINEMNkrBHURWaUCscnPzDN7sjuRNWp+110e85gAwrQlOX39cyA//Q6oIMfUBWugbM7n5+UQVBddUl0Aw1SCpDaCe9pqIqNKFmGjj5h68ule5+DHoOIMOKkNTl97Ws36AQ64I0zCErXddhBtKoy3qSoQZJRWue9Bqzc3LtOenltUZqP4pamzbUNZ2XL57SmlOP1dTkhEzS1OSE1px6LCf/gFRx/eRh10OuyzkAo60uv69l/QaF+juwfPGUNq08UTesPVmbVp5Yuc8TYejVJRvoqS6BZl0yQ8Nmh/vJtBediS6qtTjkTMMgWblQewwUrYj9ULWMRhZZobqcA4A69Hoo6zeI3wHUGQEzhlaXQDPkICmtpMrvm75wtd74has1lfKkmfakV1b3qyIqNFULeroJsZtcGYrcD1WqdGcxFKUu5wCgLsr4DeJ3AHVGl2wMrYpdEJPUoTtWUuW3OaV92q7Vabsjd6pon/3VH3Z87mG7fhapLt24Qu0mVzT2Q7IsskJ1OQcAGBy/A6gzMswYWp2ycVXKDCXpVclNkzlKm2nv9Fq375jX9Ewjsfs2mc7i0U0uwn5IlkVWqE7nAACD4XcAdZY6YDazp0p6rqSHqi0z7e5nZlwuVEzVA8266FT5bdUrQEh70uv2WklBObOQl4NuchH2Q7KshqKEeg6o8vj9KpcdoynU3wFgWKkCZjN7q6T3SvqppG3a08tTbf8DKFFS5bddmgAhzUlvxbJFeuMXrk68LSkoJ8NXjl4BUZ0r5a3vbfLAcY0vMM3v3nPKortgvbNCVe7VUuWyA0DdpM0wv0HSme7+r3kWBsBwWiu/jdk5mfZu0RokQOgUUC1fPKXVX/mhZufm93lMUlBOhq8c3QKiOlfK29/b7TvmNT5mOnB8gXbM75YkPWC/akzjkXejRl2zQiH0ahn0swuh7Fmrc+McgHpLGzA/SNLFeRYEQDZaK7/DVlB6BVSrTzkmdXfO0Gchr3NlrlNAVMdKeVPSe5vf5dq5a08T0uzcfPANBHVu1Mhb2b1ahvnsyi571jiOAVRZ2ub1z0l6QZ4FAZC9YWd67jWzcD8zi4c8C3mzMteYnZMr/YziVVe3SnmrTu+hfQxR6DNlM7v34NLO+J+XYT67ssueNY5jAFWWNsP8S0lnm9lSSddK2qsPprv/c9YFA6ogj6xkSJnONAFVP905Q+36WedMazd17iafZgK8ppAbCOrcqJG3snu1DPPZlV32rIV8HId0zgUQprQB82sk3SXpGfGllUsiYMbIyaOLWWjd1rIIqKpQGQm5MpenulXKWyW9t/Yx/U0hNxBk3ahRhe/jsFrf4yET4zpgfIFmd8wX/n6H+ezqNhlbqI1zoZ1zAYQpVZdsdz+6y+WReRcSCFEeXcxC67a2YtkiTYyP7bWtn4CqKl2d69b9Ma2Qu8kPK+m9vfxpRwx1PJdh2O9gq6p8H4fR/h5n5+Z1z/xuvf+lxw80LGUYw352ww6pCUmWx3GWQjvnAghT6nWYm8zsYEnu7nfnUB6gMvLISoaW6Rw2y1GVrs51zrT2Emo3+SwkvbclRz6kUlm7LDONIXwf885wh/Aem+qWJR5GqPsitHMugDClDpjN7G8kvU3SVHz9V5Le4+4fzqlsQNDy6GIWYre1YQKqqlRGQq3MIXtVbCDIqsxlfx+L6P5a9ntsV8XjLS8h7osQz7kAwpOqS7aZvV3SWkn/Jun58eWTktaa2cr8igeEK48uZqF2WxtUlbo616n7I5Ck7O9jEd1fy36PqJa6nXMB5CPtslKvlXS6u5/t7t+KL6slnRFfgJGTx/jPuo0ppTKSbHqmoaVrN+rolRdp6dqNtRpDinCV/X0sIvtb9ntEtdTtnIt0OAejX+aeNGdo253M7pH0RHf/adv2x0ja4u4H5FS+3CxZssQ3b95cdjGAIGU5znAUZuXtR3u3VCmq0FNJq6fQjv8yy7N07cbE7q9TkxPatPLEzF4ntH0OIBycg0eLmV3p7kuGfp6UAfO1kr7s7u9s236WpFPd/bhhC1I0AmYg2aidTIquXBcVNKB8RX2XqhIgjtpvC4DwcA4eLVkFzGkn/Vot6Ytm9ixJm+JtSyU9W9L/HLYQAMIR0iyzeStjDc7QJiUKVVWCwG6K+C5VaR1ZJtdDmerwm4LhcQ7GIFIFzO6+3syeKulNkv4w3vxjSU9x95m8CgegeKN0MimjcYBZWXsrMgjMsxJdxHepag1cRc2UTHCEVlVqWEK+OAdjEGkn/ZK7X+nur3D3J8eXVxAsA/UzSrPMltE4wKREvRUxm7K0pxLdmJ2Ta08lOqsJYIr4LvV7DI/CZDd5f66onqJ+UxA+zsEYRNplpZ5gZotarp9kZheY2SozG+v2WADVMkonkzIaB5iVtbeiGjLyqkQ3g9LG7Jys7basv0v9HMOjEkgSHKHdKPWcQnecgzGItGOYPyHpA5K2mtkjJP27pMsk/Y2kB0lalUfhABRvlMYZrli2KHESorwbB4rqlhqybl1mi+oyl0clur3rp0uy+O9UDt+lfo7hqnXfHhTBEdrRDRetOAejX2kD5sdJuir+/yWSrnD3F5rZCZI+KQJmoFbqcjLpNY4xxMaBURh72Ws8YVENGXlUopOC0maw3D4DaxafdT/H8KgEkgRHaFdW4yiAekgbMI9Jui/+/7mSLo7//5mkw7MuFAAMK+0kLyE1DozKxDS9Mp1FNWTkUYlOG5Rm+Vn3OoabgXmnRSTrFkgSHKFdiI2jAKojbcB8naQzzOxrigLmZkZ5StKteRQMAIZRxe6nVSzzINIElXk2ZLRmdicPHNcD9lugO+bmM6lEp81uFvVZJ6193Gp8zGoXSBIcIUlIjaMAqiVtwPw2SdOS3irpfHffEm8/RdIPcigXAAylit1Pq1jmQZTZZbY9gLx9x7wmxsf0/pcen0llOm12s8yJzVodtP9+Q73vUIcQEBwBALKSdlmpzZIOk3Sou7+6ZftHJZ2ReakAYEhVXB6rimUeRJkzsec9g3LaGViL+qx7BeB3zM0P/NyjMus2gHoahWX2kI2eGeZ42ag7JB3n7j9qvc3df5FTuQBgKFUcx1jFMg+izC6zRWR202Q3s/qse2V4O2XzW28f1KgMIcDwQu2JUIRRfu8hG5U5Q5CNngGzu+8ysxsl7V9AeQAgE1Ucx1jFMqeVVGlsnzW6CMN0B8+y4pvFZ52mwpcUmDcVNcEZRtsoByaj/N5DR4Mf+mHunebNbLmT2Z9L+lNJr3D3WkzytWTJEt+8eXPZxQCA2kuaeGpifCyxq3KoZSnqPfQTlB9/9iWaTehS3b6EVfM5G7NzGjPTLveB1oRuL9uO+3bq9h29X3+Q94b8FfV5LF27MbGRqtNxUiej/N5Dd/TKixJXDjBJN6w9uejiICdmdqW7Lxn2edJO+vVWSUdLapjZryTd3Xqju//esAUBANRTSC35g2Z2i3gP/WSjpmcaicGytG+Gd5gJsFqDbZPur2A2Zuc0vsA0Pmaa37Wn2tkpa02mLSxFfh6j3BNhlN976FivHf1IGzB/OddSADVENgWIvgedxtCWVWkcJIAsouLbT1DebZKyrCp87UFVezZmfrdrcmJcBz1gv56/cyE1mqDYz6OugUmac3xd33sdjMqcIchGqoDZ3c/OuyBAnZBNGR4NDtXX/B50UqVKYxEV336C8m6BelYVvl5LUknRLNtXn/X8ns+V5r3xnS9OkZnPOgYmac/xdXzvdVHnOUOQvbTLSgHoQ95L19Qdy9XUQ7eAyxR9rlVZyqOIpbD6WWqq030ffOB4ZhW+NMFT2gaDXu+N73yxilzCLu1Sa1WS9hxfx/deJ8sXT2nTyhN1w9qTtWnliXwu6ChVhtnM9pf094om/jpC0njr7e4+lvQ4YFQxbmk4dN+sh27He+tY2Cr0vigiG9FPNqrTfc960TGZlafXklT9NBj0em9854tVdOZzmHH0IernHF+39w6MorRjmP9J0kslrZH0fkkrJB0l6WWS/iGXkgEVxril4dDg0J9Qu7L2CriaqhIY5V3x7ScoLyuAb0781e8s273KOyrf+VC+q3RHHQ7neGC0pA2Y/0TSa939G2Z2jqR/d/efmdmPJZ0k6aO5lRCoIMYtDadulZE8K8khj5fvtgZwu26B0SD7L5TApF/9BOUhBfBpn6/TY+v2nU8S2neVzOfgOMcDoyVtwHy4pB/F/98laTL+/xuS3pNxmYDKo/V+OHWqjORdSQ65K2vS9+Due3cmLod0yMT4PtukwfZf3vu8SsH4sGUtKqiq03e+k5C/q62qdHyXhXM8MFrSBsw3SVoY//2ppGWSrpT0dEn16i8FZITW+2RpKmN1qozkXUkOvStr+/dgeqahFV+6RvO7916k6O77dmp6ppG4fFK/+y/PfR5alrCbKpW1Tt/5TkL/rkrVOmbKxjkeGB1pA+b/K+m5ki6X9EFJnzOzv5I0JWldTmUDUFGdguJ+KmN1qYzkXUmuWlfW5YundPZXf6jbd+ydZZ7f5YkB7SD7L899XpUsoVStskr1+c53UoXvalHHDFlsAFWSdh3mVS3/f9nMfiXpGZKud/ev5VU4ANXTLSiuWgU+C3lXkqvYlXW2LVhuSgpoB9l//T6mn8p7FbKETVUqa1ZCDsSq8F0t4pghiw2gagZah9ndL3f3fw4lWDaz15nZDWZ2j5ldaWZ/UHaZgFHVLSgexQp83uv3VnGdz37WgB1k//XzmH7X/y1y/dphVamsWQh9LecqfFeLOGbSrmEMAKFI2yVbZvY/JP2NpEdKWubuvzSz10i6wd2/lVcBU5TrpYq6ib9O0nfjv183sye4+01llQsYJa1ZHe9wn2bGJ/QuiVlLMzazKhMzZaWfTNsgY1v7eUy/vR6yyBIWlQWtQkYzS1XowRL6d7WIY2YUG04BVFuqgNnMXi7pI5I+rmgsc3M60zFJfyeptIBZ0pslnefuH4uvv97MXiDpDEmrOj8MQDdpK/Xt3es6aT5HFSvweQa0o9g9cfniKW2+8TZ97opfape7xsz04id33keDBBlpH9Nv5X3Yyamy/ry7HZujMJFWKwKx4RVxzIxiwymAakubYf47SX/l7p+Ps8pNl0t6Z/bFSsfM9pf0ZEnntN10iaIx1gAG0E+lPimr064ZFFexAj/Ky0LlZXqmoQuvbGiXR/0RdrnrwisbWnLkQwp/z4NU3ofJEmb5eac5NkPPaGaJQCwbeR8zVW04BTC6zL1TB8qWO5ntkPR4d7/RzO6UdJy7/9zMHiXpOncv5WxkZgslNSQ9292/3bL9HyW93N07/vo+5MjH+0lv/0QBpQSqZ+amWd23a/c+2/cfW6DFR0zute2KG27r+lz7jy3QIx4yoUMPfkCWRSzM5htv167d+/5OJu2LQXTbf089+iFDP3+I+jm+8nbrXffqhlvvVutHvMCkow89KJdjNsvPO6T9mKVb77pXv7xtTvft2t3X70fRn+WgBn1/dcI+AFCEL772GVe6+5JhnydthnmbpMdKurFt+7Mk/WzYQhTFzE6XdLokHfzwR5VcGiBcSZXwTtv3H1uQeaU9hMrUrXfdqxt/uyMxWJY676N+ddt/ddXP8ZW35nFV1PGW5ec96H7M+vuV5fO1B7337dqtn22/Wz/bfnfP5y76sxxE0vu74da7JSmocubt0IMfMFLvF0C1pQ2Yz5X0oZbu2I+IZ6J+r6TVeRQspVsl7ZJ0eNv2wyXd3H5ndz9X0XvRkiVL/At//fTcCwhU0dK1GxO7Nk5NTqj9e5M0hnlifGzg2V+bz9es9N+3a7e2zd6j15/4mMK6ljbLsLNDsCwl74thXiur/VcF/RxfwwptmaEsP+9B9mPW36+sn2/p2o3q9LUr47cga0nvb7dL98zvzvzYR9hC+20qG/sDefjia7N5nlRN2u7+XknrJf2HpIMkXapoErCPuPv/zqYo/XP3+yRdKemktptOkvS94ksE1EM/y/JkvVRKCEuOpBmXPcrLQg0r76W2mkJcZijLz3uQ/Zj19yvr5+s1QVen556eaWjp2o06euVFWrp2YzBLSbVjYrL0qvKZDiLE36YysT8QutTLSrn735vZuyU9QVGg/SN3vyu3kqX3z5I+bWY/kLRJ0mslLVQU0AMYQL+Tc2U5SUwIFcper/XgA8czDWhHaWImqbjZm0OdUC2rzzvtfky77Nsgsv6+dpq4q9tzv2N6iz5z+U33v7eQZ5pnYrJ06r56QKi/TWVhfyB0XQNmMztQ0jpJyxUtJfVNSWe6+635Fy0dd/+Cmf2OpHdIerik6yS90N3bx1sDlZemy1JW3ZrKCuJCqFB2q7RPjI/prBcdU1hZ6qqI4yuExpe89dqP/Sz7Noisv69JMyh3e+7pmcZewXJTqJVtZohOp+4B1Cj8NvWD/YHQ9eqSfbak0yRdJOnziro6/5+cy9Q3d/+wux/l7g9w9ye3zpgN1EWaLktldGvKuttcUd11+y2DJE1OjNe+u3Seiu5i2SloK7Lxpexupf0s+zaIrL+vrV3WJcnabm9/7nUbtmaeNc/TKA7BSNLre1H3ACqE36aQsD8Qul5dsk+V9Jfu/nlJMrMLJG0yszF3734GBgbExA/J0rS4F90qn0e3uSy66w57DFVxvejQldHFsuxsXgjdSrsFGCYNfWzn8V1pzZr3+i53e3+hVrbL6L0T0nk1zfcihJ5GeUr6bTJJJzzusPIKVaKyf6uBXnoFzI+Q9J3mFXf/gZntVDRG+Jd5FgyjKYQKZqjStLgX3SqfV4A+TIUyq2No1MYV562MLpZlN3yE0K20U+AxNTmhTStPzOQ18vyu9HruTu/PlN3EfFUX2nk1zfei7gHU8sVT2nzjbXsNJ3BJF17Z0JIjHzJy556yf6uBXnoFzGOS7mvbtjPF44CBhFDBDFWaFveiW+VD7DbX6Rh6yxev0Zu+cDUn4pL0c6xkmQ0rs+EjhO9H3QOPTpm6lz/tiFp/x/v5joR2Xk3zvRiFAOrSn2yvzNj7ItBIjZD1CnxN0gVmdm/LtgMkfczMdjQ3uPspeRQOoyeECmao0lR8i64ch9htrtOxssujqknZ2ZVRlfZYCS0bNoxhvx9ZNBzUPfAo+v2F0LW53+9IaOfVtN+LugdQoX0uADrrNenX+ZK2Sfpty+UCRd2xW7cBmWDih87STBZT9IQyIUzQ1S7NsVL0us7oPJHa3ffu3GvCnxDW4c7KMN+PLCfwW754SptWnqgb1p6sTStPrF0QUtT7C2Wt2H6/I6GdV0M8b5QhtM8FQGddM8zu/hdFFQSQ6t99cFhpWtyLbJUPMXuVZlkaiVb8ojWPibO/+kPdvmP+/u2zc/N7Zcc6fS6N2TkdvfKiII6xtIb5fmTVjTaEjGhdhNK1ud/MZGjn1RDPG2UI7XMB0BljkREUTqTV0V4Rf/9Ljw/ic2o/hhaY3d8duxWt+MVbvnhK6zZs3StglvYOOrqtgd2a1Ws+X+gGbcDKortmnbq3p5F140D783U6LotufOu3q3+I59W6d7dOI8TPBUAyAmYEhxNp+EKviLcvSzNoK35R2bm0rzNoeULKMvYKBNP0EBiFiXGymB8glIxoEbL+TUp6PpMS13wuuvFtkMwk59Uw8bkA1dBrDDOAipqeaWjp2o06euVFWrp2Y6bj7Ko0znTQcd1FjVdM+zqDlieUcZdNvcbttX9endS9S30W4zxHaVKhrH+Tkp7PpX2OyTK60BY9VwUAjDoyzEAN5Z0BHoWKeFHZubSvM2h5QssypsmOtWZdlq7dGNxM7EXIortmiLPY56Xbb9IgPSw6PZ8rClDL7q1BZhIAikPADNRQ3kFSlSrigzYeFNUokPZ1Bi1PaI0b/QaCozwxzrBB0Sjtu06/SYdMjA/0/e/0fFOTE9q08sSMSg0AqAK6ZAM1lHeQVKVlQQbtqlnUkh9pX2fQ8oS4dEk/ywDR/XRwo7TvOv0mmWmg738VfuPyHHYDANiDDDNQQ3lngKs0u+egjQdFZefSvs4g5ZmeaWjHfTv32R5axb8Xup8OLsR9l8ckdJ1+k970hasT75/0/W8v14ufPKVLf7I9yN+40CdeBIA6IWAGKqDfCuYwwV7a18q6Ip7XTM6DNh4U1SiQ9nX6LU/S7OCSNDkxrtWnHEOlekBFzjge0uzmWckz0Ev6TVq3YWuq739SuS68shFsRj60uQkAoM7ME9YnHQVLlizxzZs3l10M4H6dKsedlkXqVZEbpLI96GsNK8/XLes9la3TZFmMwRxckcdSXY/boo/LtPuxat+Xo1delLjElUm6Ye3JRRcHAIJkZle6+5Jhn4cMMxCAblmXQTMJg2SAy8pa5Pm63TKzdczgNXXqct6IZw2uy/ssUpHfj7pmEIuehC5tz4zQJsfrpUoTLwJA1REwAwHoVjkusiJXVqUx79dNajyo+xjAThVqSYW8zzo2RozCdzFvZQR6aRoPqxaAjtIM6ABQNmbJBgLQrXJc5CzHZc2oXMbrDjp7dlUkzfLblPf7bDZGNGbn5NrTGFH1WXxH4buYt1Bnnw61XJ2M0gzorZgZHEAZCJiBDoo8MXerHBdZkSur0ljG69Y1g9fUrFB3kuf7rGtjRLfjNOvfizTfiSoGD6EGeqGWq5t+lmerg7o2xAEIH12ygQRFd9ft1r0u79maQ1hKpYxlqsrugllEl+Xli6dSzxKcpbo2RnQ6TiX1/L3o9/Pu9Z2o8pCCEJe6ksItFyJ1HdcPIHzMkg0k6DRj6piZ3vcnx+Vyci5qzGfr60weOK677tmp+d17fgfqMBNvGmXOQlz32ZarNuPwsHq93zw+g1Hbx53k/btZx7H4VcXM4AD6xSzZQI46ZcJ2ueeWxSkiu9Fecb99x/w+9xmVFvsystpNRWZK8nifvYKIUZuQqFdGPY/Pu65Z/H7knWWvcha/jsruFQRgdBEwAwm6zTBc5YAyqeKeZFQq3WV1wSxjaZ0su/D3CiLKbIwoQ6+KfB6fN8FD/g1PdAEOy6g1xAEIBwEzkCDpxNyqqgFl2nJXtdJdle6TVQ520gYReTRGhPr59qrI5/F5Zxk8lLVfh33dvBueyOKHZdQa4gCEg4AZSNA8Ab/li9doV8I4/yoENkm6Zc6bqtpiH1r3yW7BQJUzJWUFEaF9vq16VeTz+LyzCh7K2q9ZvG7eDU9VbtiqKyZmA1AGAmagg+ZJuaqBTZKkivv4mOmg/ffTHXPzlW6xD6n7ZK9goMqZkrKCiJA+3yTdKvJpZrwe5FjIIngoa79m8bq9GiKGzWBXuWELAJAdAmaMtF4VqjwDmzK6QVY5UOslpO6TaYKBqmZKygoiQvp8B9Hp8+4n05rHb0ZZ+zWL1+32e5ZFBrvOv5cAgPQImDGy0lao8ghs3jG9RZ+5/Kb7l8gosntpVQO1XkLqPln14K6bYYOIQYO+Ij/fIhuz0mZa8+o6Xdb3JqvX7fR7llXmvK6/lwCA9BaUXQCgLN0qVHmanmnsFSwX+dp1tmLZIk2Mj+21razuk50q/XUZ+7h88ZQ2rTxRN6w9WZtWnthXsLxq/RY1Zufk2hP0Tc80ej62qM93mDIOIm3jSl6/V2V9b/J+3TT7dXqmoaVrN+rolRdp6dqNuX3GVcI+AYB9ETBjZJWVBVy3Yes+wXJRr11nyxdPac2px2pqckImaWpyQmtOPbaU7FBIwXtIhgn6ivp8i25IS9u4ktfvVVnfm7xft9d+LbphpArYJwCQjC7ZGFlldUXsVsGtSwayLKF0n2TsY7Jhg74iPt+8G9Lau3uf8LjDdOGVjZ5jwvP8vSrre5Pn6/Yaa1/kZGehLofWLvSJ9QCgLATMGFllTV7UqeJrcZlQD6EE7yEJaZx5J3mWMWkc8oVXNvTiJ0/p0p9s7xpQMWNzf3o1WhXVwyjk5dDa1XnuBQAYBgEzRlZZWcCkiq9JevnTjgiuAgX0o1cmrQpBX55l7JTBu/Qn27Vp5YldH0uvhf51a7QqqvGmSlnbKjRoAUAZCJgx0srIAlLxRR2lyaRV4djPs4x5d0kvu+tv2a/fj6Iab6qUta1CgxYAlIGAGRjAsBVDuuuOnioFE4NIm0mrwrGfVxmL7u5dZNffsl+/X0U13lQpa1uFBi0AKAMBM9CnqlUMUb4Qj5msA/gqZdLKUkZ376y7/nY6bqrU9bipiMabqmVtq9CgBQBFI2AG+lTFiiHKFdoxk0cAX6VMWllC7u6dRrfjpugGk6r02CBrCwDVR8AM9IlMGvqV5zEzPdPQ6q/8ULNz85KkBx84rrNedEzXCnkeAXzVMmnd5BmMVbG7d1O346bIBpMQe2x0Q9YWAKptQdkFAKqmUwWQTBo6yeuYmZ5paMWXrrk/WJak23fMa8WXr9H0TKPj4/II4JcvntKaU4/V1OSETNLU5ITWnHps5QKFZjDWmJ2Ta08w9o7pLVq6dqOOXnmRlq7d2HX/lmHFskWaGB/ba1vWDRbdjpsiXr+pW+AOAEDWyDADfeqVSatKV8FhlfU+q7h/88q+rtuwVfO7fZ/t87u8a7Y4r2xgHTJpnYKxz1x+k5p7OsSMZhFdf7sdN0V2PaaXD0JXxfMUgM4ImIE+dasYVq2r4KDKep9V3b/9BBP9VLS6BQjdbssqgK9jpbDTfmtvlghx3oK8Gyx6HTdFNZjUabx8Hb9Do66q5ykAnREwAwPoVDEMbXKnvJT1Pqu8f9MEE/1WtDoFDs3bupVFGi4bWNdKYbd92m7UMpqhTGCVFLiPj5nuvnenjl55UWUCz7p+h0Zdlc9TAJIRMAMZGpWugmW9z7rv334rWiuWLdKKL12zT7fs8THrmS0eNhtY10phUjBm2jfDLFUzozms9uNmeqahpWs3FhpAtwfukweO6657dt4/lr8qgWddv0Ojru7nKWAUMekXkKFRmRCsrPdZ9/3bb0Vr+eIprfufx2lyYvz+bQ8+cFzrXnJcx+7eWU1cVddKYdLkZS9/2hGFTWg1qCw/235eM2mCtCJee/niKW1aeaJuWHuyDtx/v30ajaowCVhdv0Ojru7nKWAUkWEGMlSnpXW6Ket91n3/DjI2M22mOOvun3UaR9ouaZ8uOfIhpXdF7qSsrr2hZEjTBp6hjReu83dolNX9PAWMIgJmIEOhjPHLW1nvs+r7t1eFPc+KVtbBzaBlDS1oSSvkGcDLClxDyZCmCTwHaVTI+1glsKqnqp+nAOyLgBnIWMgV6yyV9T6run/TVNjzrGhlHdwMUlYmOcpHWYFr2RnSZkDbmJ3bZ5x5e+DZb6NCEccqgVV9VfU8BSAZATMAFCBthT2vitbkgeO6fcf8PtuHCW76LWsoXXjrpqzAtcwMaXtA69ozOdtUQuDZb6NCUcdqmYFVVXt7AEDRCJgBoABldl+dnmnornt27rM9zWzaWQqlC283VQwiygpcy8yQJgW0zWB508oT97l/v40KVThWh0FvDwBIj4AZAApQZvfVdRu27jOLsCQdtP9+hVaOy+7C20seQUQRAXiZgWtZGdJ+A9p+GxVCP1aHRW8PAEiPZaUAoAArli0qbWmiTkHEHXP7dtHOU5n7II1uQcQgilx2qXWZpU0rT6x90NPv0j1Jy4WtOfXYjvsp9GN1WHXPoANAlsgwA0AByswChpItC32So6yDCLJ4/UubkR+kG3o/2fDQj9VhhfKbAABVQMAMAAUpq/tqSMvXhDx7bNZBBFm8/vTTJb6IgDbkY3VYIf0mAEDoCJgBoObqni3LStZBBFm8/vSbka9zQJs3fhMAID0CZgAYAaEEFyHPQp11EFGFLF5InwcZ+WKF8psAAKEjYAYAFKIKS9lkGUSEnsUL7fMgIw8ACBEBMwDkLKQsXplGcRKsELN4zeMxKTgt8/OoQkYeADB6CJgBIEehZfHKRJfb4WTR8NJ+PCYp6/MIPSMPABhNBMxADsgoliPE/T6KWdVO6HI7uKwaXpKOx3Zlfh4hZuQBAKONgBnIGBnFcoS638mq7kGX28Fl1fDS67jj80BaWTVQ9nqeEBtCAYyWBWUXAKibbhVb5CfU/d4pWzeKWdXli6e05tRjNTU5IZM0NTmhNaceW5vK7/RMQ0vXbtTRKy/S0rUbNT3TyOy5s2p46XbcPfjA8Vp9HshPs4GyMTsn154Gyn6P+V7Pk9XrAMAwCJiBNsNWeskoliPU/b5i2SJNjI/ttW2Us3jLF09p08oTdcPak7Vp5Ym1Cc7yrthn1fCSdDw23TO/u+9yYTRl1UDZ63lCbQgFMFoImIEWWVR6ySiWI9T9XvesKiJ5V+yzanhpHo9jZvvclkcgkmfWHeXJqoGy1/OE2hAKYLQQMAMtsqj0klEsx4plizS+YO8gYHyBBbHf65pVxR55V+yzbHhZvnhKu90Tb8syEKE7bX1l1UDZ63lCbQgFMFoImIEWWVR6ySiWqD1ptm8SDchFERX7LBteiigv3WnrK6uG4V7PQwM0gBAwSzbQIqtlb1gapXjrNmzV/K69s2bzu3wkl29C8ao2A3gR5aU7bX1ltWZ2r+dhbW4Mi1nWkQUCZqBF1Sq92IPKOcpUtYr9oOXtp/LJutv1llXDcK/noQEagwp1uUlUDwEz0KJqlV7sQeUcZataxb7f8vZb+aQBEkCZslq/HiBgBtpUrdKLSOiVc7qFIUT9HJf9Vj5pgARQJnqeISuVDZjN7DJJz27b/AV3f1kJxQFQspAr53QLQ1m6BcT9HpeDVD5pgARQFnqeISuVDZhjn5T09pbrNBkBIyzUyjndwvJHBn9fvQLifo9LKp8AqiT0nmeojqovK7XD3W9uudxRdoEAoB3dwvLFer/Jei3r1O9xWfclfqZnGlq6dqOOXnmRlq7dOPLHD1B1LPOJrFQ9w/wyM3uZpN9I+rqks939zpLLBAB7ITOXLzL4yXoFxP0elyEPexhWCMMm6CUBZC/UnmeolioHzJ+VdKOkbZKOkbRG0u9Jen6nB5jZ6ZJOl6QjjjiigCICAN3C8kYGP1mvgHiQ47Kulc+yG11CCNgBAMmC6pJtZu8yM+9xeY4kufu57r7B3be4++clvVTSSWb2pE7PHz9mibsvOeyww4p5UwBG3iDdwugeml6njOioZ/B7daGmu+IeZTe69Oo+DwAoT2gZ5g9IuqDHfW7qsH2zpF2SHiPpqgzLBABD6yczR7apP2Twk6XpQl3XjHG/yh42UXbADgDoLKiA2d1vlXTrgA8/VtKYpF9nVyIAKF7Z3UOrJvSxtWWOTSUgTqfsRpeyA3YAQGdBBcxpmdmjJL1c0sWKAuwnSHqfpBlJm0osGgAMjWxT/0INDOktUA1lN7qUHbADADqrZMAs6T5Jz5X0BkkHS/qlpIsUzZK9q9sDASB0ZJvqg94C1VFmo0vZATsAoLNKBszu/ktJzy67HACQB7JN9UFvAaQVai8JABh1lQyYAaAoZYw/JdtUH/QWAACg2giYAaCDMsefkm2qB3oLAABQbUGtwwwAIWFtVAyLtY4BAKg2MswA0AHjT5EFegvUX5lLhwEA8kXADAAdMP4UaVQ1WKpqufMy6P5g6TAAqDe6ZANAByuWLdLE+Nhe20Iafzo909DStRt19MqLtHTtRk3PNMou0shpBkuN2Tm59gRLoX8WVS13XobZHwzdAIB6I2AGgA5CHn9KwBOGqgZLVS13XobZHwzdAIB6o0s2AHQR6vjTbhX8EMubRhW7CFc1WKpqufMyzP5g6AYA1BsZZgCooLoFPFXNmHcKikIPlqpa7rwMsz+Shm6MLzDtuG8nwyUAoAYImAGgIlrHLC8wS7xPVQOe1V/5YSW7CIc+zr2TqpY7L8Psj/ahG5MT45JJt++Yr1TjDwAgGV2yAaAC2mfi3eW+z32qGvBMzzQ0OzefeFvoGfNml/GqdSWvarnzMuz+aB26sXTtxn2O56oPlwCAUUbADAAVkDRmWZLGzLTbvdIBT7cschUy5qGOc++lquXOS1b7o27DJQBg1BEwA0AFdKps73bXDWtPLrg02eoWSFQxY47RxiRgAFAvjGEGgAqo8yRNnd7Dgw8cJwOKymF8OADUCwEzAFTACY87TO3TfNWlEt4pwDjrRceUVCJgcCGv3w4A6B9dsgEgcNMzDV14ZUOt03yZpBc/uR5jUJmACnVTxfHhVVwHHQCKQMAMAD2UXZFMmvDLJV36k+2FlSFvVQwwgLpon4W/uRSWJL6XAEYeATMAdBFCRZJZd1GmshuMkL+kRjmWwgKACGOYAaCLbhXJotR5wi+Erdlg1Jidk2tPg9H0TKPsoiFDNMoBQGcEzADQRQgVSWbdRVlCaDBC/miUA4DOCJgBoIsQKpLMuouyhNBghPzRKAcAnTGGGQC6WLFs0V5jmKVyKpJMioUyLJycUCMhOCbzWC/MVA8AnREwA0AXVCTLx6RT5QmlwQj5o1EOAJIRMANAD1QkyxPCLOWjjAYjAMCoI2AGAASL5W7KR4MRAGCUMekXACBYTDoFAADKRMAMAAhWCLOUAwCA0UXADAAIFsvdAACAMjGGGQAQLCadAgAAZSJgBgAEjUmnAABAWQiYAQBowbrPAACgiYAZAIAY6z4DAIBWTPoFAECs27rPAABg9BAwAwAQY91nAADQioAZAIAY6z4DAIBWBMwAAMRY9xkAALRi0i8AAGKs+wwAAFoRMAMA0IJ1nwEAQBNdsgEAAAAASEDADAAAAABAAgJmAAAAAAASMIYZAACgD9MzDSaGA4ARQcAMAACQ0vRMQ6vWb9Hc/C5JUmN2TqvWb5EkgmYAqCG6ZAMAAKS0bsPW+4Plprn5XVq3YWtJJQIA5ImAGQAAIKVts3N9bQcAVBsBMwAAQEoLJyf62g4AqDYCZgAAgJRWLFukifGxvbZNjI9pxbJFJZUIAJAnJv0CAABIqTmxF7NkA8BoIGAGAADow/LFUwTIADAi6JINAAAAAEACAmYAAAAAABIQMAMAAAAAkIAxzAAAACjc9EyDydMABI+AGQAwMqigA2GYnmlo1fotmpvfJUlqzM5p1fotksR3EkBQ6JINABgJzQp6Y3ZOrj0V9OmZRtlFA0bOug1b7w+Wm+bmd2ndhq0llQgAkhEwAwBGAhV0IBzbZuf62g4AZaFLNoBg0X0WWaKCDoRj4eSEGgnfvYWTEyWUBgA6I8MMIEh0n0XWOlXEqaADxVuxbJEmxsf22jYxPqYVyxaVVCIASEbADCBIdJ9F1qigA+FYvnhKa049VlOTEzJJU5MTWnPqsfQiAhAcumQDCBLdZ5G1ZkWcbv5AGJYvnuL7ByB4BMwAgsT4NuSBCjoAAOgHXbIBBInuswAAACgbGWYAQaL7LAAAAMpGwAwgWHSfBQAAQJnokg0AAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAEwQbMZna6mV1qZrNm5mZ2VMJ9HmxmnzazO+LLp81ssvjSAgAAAADqJtiAWdKBki6RtLrLfT4r6UmSXhBfniTp07mXDAAAAABQe8EuK+XuH5AkM1uSdLuZPV5RkPxMd/9+vO2vJX3HzBa5+9aiygoAAAAAqJ+QM8y9PF3SXZK+17Jtk6S7JT2jlBIBAAAAAGqjygHzwyRtd3dvboj/vyW+DQAAAACAgRUaMJvZu+IJvLpdnpPj659uZpvNbPP27dvzehkAAAAAQA0UPYb5A5Iu6HGfm1I+182SDjMza2aZzcwkPTS+bR/ufq6kcyVpyZIlnnQfAAAAAACkggNmd79V0q0ZPd33JR2saCxzcxzz0yUdpL3HNQMAAAAA0LdgZ8k2s4cpGov82HjTE+I1lm9y99vc/cdm9g1JHzWz0+P7fFTS15ghGwAAAAAwrJAn/XqtpBlJn4mvXxRfP6XlPn8m6RpJG+LLNZJeWWAZAQAAAAA1FWyG2d1XS1rd4z63S3pFEeUBAAAAAIwWa1mVaaSY2Z2S6LqNqjtU2c0LAJSJYxl1wHGMuuBYRh0scvcHDvskwWaYC7DV3ZeUXQhgGGa2meMYdcCxjDrgOEZdcCyjDsxscxbPE/IYZgAAAAAASkPADAAAAABAglEOmM8tuwBABjiOURccy6gDjmPUBccy6iCT43hkJ/0CAAAAAKCbUc4wAwAAAADQEQEzAAAAAAAJahkwm9nrzOwGM7vHzK40sz/ocf9nx/e7x8x+bmavLaqsQDf9HMtmdqqZXWJm283sTjO7wsxOKbK8QCf9/i63PO6ZZrbTzK7Lu4xALwPUL/Y3s3fGj7nXzG4yszOLKi/QyQDH8p+Z2dVmtsPMbjazC8zsYUWVF2hnZs8ys6+YWcPM3MxOS/GYY83sP81sLn7cP5qZ9Xpc7QJmM3uppA9K+l+SFkv6nqSvm9kRHe5/tKSL4/stlrRG0r+Y2YuLKTGQrN9jWdKzJW2UdHJ8/4sl/d+0gQmQlwGO5ebjHizpU5K+lXshgR4GPI4/L+kFkk6XtEjS/5R0bc5FBboaoK68VNKnJZ0v6RhJyyU9QdJniigv0MHBkq6T9AZJc73ubGYPkvQfkn4j6ffjx62Q9Oaej63bpF9mdoWka939r1q2/bekL7v7qoT7v0fSqe7+mJZtH5d0jLs/vYgyA0n6PZY7PMcPJH3H3d+SUzGBngY9ls1svaRrJJmkl7j7E3MvLNDBAPWL50v6kqRHufutxZUU6G6AY/mtkl7v7ke2bPsLSf/i7gcXUWagGzO7S9Lfuvt5Xe5zhqT3SDrc3efibe+QdIak3/UuQXGtMsxmtr+kJ0u6pO2mSyQ9o8PDnp5w/w2SlpjZeLYlBNIZ8FhO8kBJt2dVLqBfgx7LZvY6SYdLeld+pQPSGfA4Xi7pvyS92cx+ZWb/bWYfMjMCDJRmwGN5k6SHm9mLLHKopJcp6skGVMXTFSWRWrPRGyQtlHRUtwfWKmCWdKikMUWp9la/kdRpnMXDOtx/v/j5gDIMcizvxcz+RtLvKupGBZSl72PZzI6VdJakV7j7rnyLB6QyyG/yIyU9U9Jxkl4s6W8Vdc8+L58iAqn0fSy7+/cVBcifkXSfpO2Kev78eX7FBDLXKeZr3tZR3QJmAJLiMfjrJP2Zu99YdnmAtMzsAZK+IOmt7n5D2eUBhrBAkiv6Hb7C3TcoCppfbGaHl1s0ID0ze4Kkf5H0T4qy0y9QFGB8tMxyAUXZr+wCZOxWSbsUdeNrdbikmzs85uYO998ZPx9QhkGOZUmSmb1E0URJr3L3r+ZTPCC1fo/lh0t6vKRPmtkn420LJJmZ7ZT0Qndv70oI5G2Q3+RfS2q4+x0t234c/z1C+2Y6gCIMciyvkvQDd18XX7/WzO6W9B0ze7u7/yqfogKZ6hTzNW/rqFYZZne/T9KVkk5qu+kkRTMAJvl+h/tvdvf5bEsIpDPgsSwz+xNFXbBPc/cv51dCIJ0BjuWGpGMlHd9y+Yikn8b/dzz+gbwM+Ju8SdLCtjHLj43/0vMHpRjwWD5QUZDdqnm9VrEEau37kv7AzA5o2XaSpG2SftHtgXU8yP9Z0mlm9hoze7yZfVDRYO6PSJKZfcrMPtVy/49ImjKzD8T3f42k0ySdU3TBgTZ9Hctm1hxftFLSt83sYfHlIWUUHmiR+lh293l3v671IukWSffG1+8q7V1g1PVbv/ispN8q6i1xTLw0zwcVzUR8S9GFB1r0eyx/VdIfmdkZZvbI+Fj+kKSr3P2mwksPSDKzg83seDM7XlFMe0R8/Yj49jVm1ros5Wcl7ZB0npk90cxOVVRn/uduM2RL9euSLXf/gpn9jqR3KOrad52iLnzN1twj2u5/g5m9UNL7FU0rvk3Sme5+YYHFBvbR77Es6bWKvtMfiC9N/ynpOXmWFehmgGMZCM4A9Yu7zOx5isZ+/peiFQumFVXQgNIMcCyfZ2YPVDQG/32S7pC0UdLbiis1sI8lki5tuX52fDlfUfLz4ZIe1bzR3e8ws5Mk/W9JmxX9Jr9PUQNSV7VbhxkAAAAAgCzUsUs2AAAAAABDI2AGAAAAACABATMAAAAAAAkImAEAAAAASEDADAAAAABAAgJmAAAAAAASEDADAJAxMzvPzL5W4OsdamZuZs/J+XUuM7N/zfM1AAAICQEzAAADiINiT7gcL+kNkl7Rct99Ak0ze058/0MLLjoAAEhpv7ILAABAhX1T0ivbtt3q7jvLKAwAAMgWGWYAAAZ3r7vf3HbZ2dol28zOk/RsSX/TkoU+StKl8XNsj7edF9/fzOzvzOxnZjZnZlvM7BWtL2pmv29mV5rZPWY2I+mp3QppZqeb2W/MbKxt+2fN7Cvx/48ys383s5vN7G4zu8rM/rDH8/7CzN7atm2vbLqZ7W9m7zGzX5nZDjP7LzNb1nL7uJl9yMy2mdm9ZvZLM1vb7XUBACgKATMAAPl6g6TvS/qkpIfHl19KenF8+zHxtjfE198l6S8l/Y2kJ0haI+mjZnayJJnZwZIukvRzSUskrZR0To8yfEnSIZJOam6In+ePJF0QbzpY0tfj+xwn6UJJ683scQO851afVNRg8GeSnijpfElfNbPj4tvPlPTHkl4m6TGSXipp65CvCQBAJuiSDQDA4F5gZne1XP+Ou/+P1ju4+x1mdp+kHe5+c3O7md0W/3uLu98abztI0pslPd/dvxPffoOZPUVRAH2RosBzf0l/4e53SbrOzN4t6dOdCunut5vZxZJeLukb8eblknZK+kp8n2skXdPysHeb2YskvURREN83M3uUpD+VdJS73xRv/lcze56kv5b0OklHSrpe0b5zSTdJ+t4grwcAQNYImAEAGNy3JZ3ecn1uyOd7gqQDJH3DzLxl+7ikX8T/P17StXGw3PT9FM99gaTzzexAd9+hKHi+0N3vke4P1s+S9IeKMt7jcVmuHfzt6EmSTNKPzKx1+wMkbYz/P0/Sf0i63swukXSxpK+7++4hXhcAgEwQMAMAMLgd7v7TDJ+vOVTqRYoyra3mh3zuixRllP/IzL4l6XmSlrXcfo6kF0h6q6T/lrRD0qcUZbM72a0oIG413vL/Akku6fe1b/nnJMndr4rHdC+T9FxFXbavMbOTCJoBAGUjYAYAIH/3SRpL2Ka27T+SdK+kI919o5L9WNJpZnaQu98db3tarwK4+71m9iVFmeVDJd0s6bKWuzxT0qfc/UJJMrMDJD1KUXfpTrYrykar5TGPkzQTb5pRFFA/zN0v3ffh95ftTklflvTlePKzyyU9usdrAwCQOwJmAADy9wtJT4kzqXdJuk3SjYqyryeb2Vclzbn7nWZ2jqRzLOrD/G1Fk3E9TdJudz9X0mclvVvSJ8zsnZIWSvr7lOW4QNK3JB0t6XNtGdzrJf2xmf27omzwWYq6ZHezUdKr45m2t8fluL9u4e7Xm9lnJJ1nZm+RdJWkh0h6jqSfu/t6M3uzpF9Lujp+3T+T9P8k/SrlewIAIDfMkg0AQP7OUZRR/pGiwPIId28oCkrfLek3kppLMf2DpNWKukb/UNH43hdLukGS4rHLf6hoRumr4ud+W8pyfEdSQ9FY6QvabnuzpFvi+3xdUZb3O+pujaKg+d8lXSLpu9qTXW76C0UzZb9X0k8kfU3SsxQ1GEjSnZJWSPpB/H6Ol/Q/4nHWAACUyqIJKQEAAAAAQCsyzAAAAAAAJCBgBgAAAAAgAQEzAAAAAAAJCJgBAAAAAEhAwAwAAAAAQAICZgAAAAAAEhAwAwAAAACQgIAZAAAAAIAEBMwAAAAAACT4//Z69bA5lCb9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "ax.scatter(yhat, res.resid_pearson)\n", "ax.hlines(0, 0, 1)\n", "ax.set_xlim(0, 1)\n", "ax.set_title('Residual Dependence Plot')\n", "ax.set_ylabel('Pearson Residuals')\n", "ax.set_xlabel('Fitted values')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Histogram of standardized deviance residuals:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.045424Z", "iopub.status.busy": "2022-05-09T08:26:26.044480Z", "iopub.status.idle": "2022-05-09T08:26:26.212210Z", "shell.execute_reply": "2022-05-09T08:26:26.211723Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6MAAAHqCAYAAADxrpiRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAue0lEQVR4nO3de7xtdV0v/M8X9hFMSFEQzMJtaXZSO6bbG3nBOmi5e0pPdjS84SlJUUuzY+DxqU31FFmpVJpBPYKpkXlHUJGErLxC+SAm4g0VEdjIRbAtBP2eP8ZYMpmsvddce8/9m67F+/16zdfac4zfHOM7xxhz7flZv98Yo1prAQAAgJ72WHQBAAAA3PYIowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCa0pVXVRVJy26jvWuqvavqr+tqiuqqlXVCxdd067qeexU1RHjdts4Me3sqjq7x/qnamlVtWUnX7txfP0R863qFuu41bZi+6pqS1XNdF++Hsf8auoBmCaMAgsz8SX0YduZ/+6qumgO6zlk/MJ0p11d1m3IcUn+ryR/mOTpSd67swuqqu8Zt/8D5lQbALAObFh0AQCrdJ8k/7nK1xyS5LeSnJTk6jnXs14dmuR9rbU/mMOyvifD9r8oySfmsLy16rGLLuA71F8nOSXJ9YsuZI343Qx/LAJY84RRYE1pra25L6xVdbsk/9lau3HRtazCXZNcs+givlNV1Z5JNqzmeGyt3bAbS1qzWms3Jblp0XXsDrvjsz8uay39LgHYLsN0gTVluXOgquqoqvpkVX2zqq6pqk9U1S+P87ZkGGqaJF8chwW3qjp04vXPqarzq+pbVXVpVf1FVd15mXU/r6q+UFXbqupjVfWo6fMAq+rQcflPHYemfjnJtiTfW1W3q6pjq+rjVXXVxHKesMy6WlW9tqqeVFWfGtt+dGmoa1U9u6o+O9b8D1X1/TNuv43juaBfH5f58cn1Lw2dTrJvkmcuba8VlvkTVfXB8T39e1V9vqr+bGl7JPn42PR1E9t/yzj/R6rqdeNrvjWeo3pKVR08tY6lId2PrqpXVNXWcX+/vaoOmGpbVfWyqrp4rOesqrrvMnXfuar+sKrOq6prq+q6cX8+cplt1qrq6Kp6flV9NkMv3sPH+fetqg+M2/PiqnpZlvn/dZlj5aSJ7TH92DLRbq+q+q1xf19fVV+tqldW1XdNLX+vcfrW8f28q6q+d0f7bur1dxpruqaqrq6qk5PcaTttf7Cq3jweR9+qqn+tqidNzN80vo9fXOa1j6iJ81Br+fNrHzkep18a3/PXqurEmvpc1ni+YlXdZ6z96rH+101vn7H9U6rqI+Oxc3VV/VNV/exUm8fW8Jm6bny8t2YYYl47+OzPss3GNhvGY/fC8Xi6sobP/f+Yfs9Tr5v1mF/2/M7t7IOfqapTx2VeP+6LP6yqvWfYFg+sqtPHY/Fb42v/uqpuv9JrgdsWPaPAd4I7VtX+y0z/Lyu9cPyy++okb0nyZ+Nr7pthaO5fJHlbkh9M8gtJXpTkivGlnx5f/7Ikv5PkA2P7H0jyvCQPraqHLvV8VdVzx+X/U5JXJrlHknckuTLJxcuU9tIMw4mPT1JJrkvy3Ul+OcOQxNcl2TvJ4UneXlWPb629Z2oZhyTZPL6/luSYJO+uqt9N8itJ/jxDWPiNDEOQH7XCtrprkg9lCJp/kmRrkqcleVtVPbW19jdJPpjhHNG/TPKxJCessMwfTnJakk8m2ZLk3zNsw8eNTT6d5DeT/Pa4rH8cp583/jwsw9Dr1ye5ZHztc5I8pKru11r796lVvirDNj82ycYkL8ywX5480ea3k7wsyenj4wFJ3pdkr6llfX+SJyV5c5IvZNiWv5jkzKp6cGvtvKn2T09yh/F9XJvka1V1UJKzMvx/+gfj9COTfOtWG+vW/iLJmVPTfirDMXF5MoSMJG9P8ugkJyb5tyT/NclRSe5bVY9rrS2Fi7/MsD/flGE/H5ph36xoXM87kzxirOvfkvxskpOXaftfx+VfmuTlGY7tJyb5u6p6emvtDa21c6rqcxn2y19NLeLJGcL823dQ0s8nuWOGbX15kh9J8ktJ7ldVh0y85yWnZNiHxyR54Nj28gyfjaW6lz7rH8lw/GxL8qAMx+o7xzaHJ3lDkvePy9orw/78x/GYuGAHNS+51Wd/lm02vva3kvyfDNvsYxmOtx9N8pAMv8u2Z9ZjfjWelWE//UmGURIPy/A79PuSPGV7L6rhj0Pvz/C79uVJrhpf8zPj+9m2CzUB601rzcPDw2MhjyRHZAhZO3pcNPWai5KcNPH87UnOX2E9vz4ua+PU9AMyfNk6M8mey9T1/PH57TJ8sfqXJP9lot0zx3ZnT0w7dJz25SR3mFrfnkn2mpp2uyTnJzlzanpLckOSH5iYduQ4/fIkd5yY/nvj9HutsB1eMbY7dGLa7TMEj69NvbfrJrfzDpb5q+My999Bm01jmyOWmfddy0w7ZGz/tGX2yZlJauo93bi0PSb26bun2v32+PrJY2evJHtMrXu/JJcl+cuJaRvH116X5G5T7V85znvIxLS7ZAjMtzjmkpw9eaws875/KMOX/jOWjscMwfQ/kzx6qu1Tx+U/dnz+38bnr5lq9/px+pYV9uPPju1eMnW8njW978b6PpXk9lPLOCPDH2ZqfP674745YKLNHuOx9o5l9u3ktlruuDh8bPeIiWlbxmn/71TbtyW5YuL5D2QYCvzOTHzWx3lL9d5h3G/Ty9ovw2fuTStsw0Oz/c/+rNvsX5O8e4X1bEnSJp6v5pi/xWt3Yh8sBe3v20E9S8fSph29Dw8PD4/WmmG6wHeEX8nQQzb9+OgMr70mwxDYB+/Eev97hjB4fBvOW1vy1xkCyebx+aYMAePE1tp/TLR7Y4a/+i/n9a21b05OaK3d1G7uab3dOOTwuzP0Rj5omWWc1Vr7/MTzpe3xttbaNctMX2mo7uYk/9JaO3uipm1JXpPkoAw9Squ1VMcTqmrV/6e0iZ7Pqtqnqu6S5MIMF5pabpv8VWttslfsHzOEpnuMz5f26Wum2v3JMuu+vrX2n+O69x7XvWeGYcXLrfsdrbWvTU17fJKPt9Y+NrHcr2fonZxZVX13bu5p/4WJ4/F/Ztgen6rhdjv7j6MI/iHDF/7HTNSRDL3Ek271vrfj8RlCxp9PvI+bMvTKT9Z55wzb+M1J7jBV03uT3D3DSIRk6K3cM8nPTSzi0RmOtVN2VMzScTEOP/3ucfkfGmcvt29OnHr+j0nuMm7XZOiF3CPJ70x91jNxnByWIXi+aep97Tku7zGZzS0++6vcZtdk6PH+wemF7sDMx/xqTOyDPapqafTKP2Xo7d3R74ql3wk/XVUrjm4BbtuEUeA7wcdba2dOP3LzkNodWRoa+bEazjt8bVXN+qVxKcB8ZnLi+GX1sxl6xCbbfW6q3Y0ZemqX8/nlJlbVL1XVpzIM4/x6hqGyz80wJHHal6eeL33J+8p2pu+3nVqW3CNT73X06fHnxhVev5y/zfAF9cQkl4/nxB1eVTOdBlJV+9Vwju7XM+zHKzJskztltm2y9MeApfe+tK8+O9motXZFpv5wMH7JPrqqvpBh6ODSujdvZ93L7dN7TK9rdOEy05Y1DpF9Q5KDkzxxDLNLfjDDMOatU4+vZAgFd52oo2XqGF1FHfdIcmlr7doVXn+vcb1blqnpj8c2d02S1tr5GXoDJ4d0PiXDUO5Td1RMVX1fVZ2S4di+Zlz+F8fZO3Nc/MD481M7WO1SAHx/bv3e/kdu3tYrmT5OZt5mGYa03zHJZ2o4V/wVVbVphfXNfMyvRlXdr6pOzzAi4Oqx3n8YZy+3D5b8Q4bTJn4rydfH806fXVV32NlagPXLOaPAmtZa+3RV3SdDz87jkvx0kl+uqte01p63wNJudV5UVT01Q2g7NUOIvjzDMMZnZRiCOG17Vxjd3vRafZm7prW2raoeneF81aV98MYkv1ZVjxx7XnfkzUl+LMOX8n/NEEhbhp6z5f5gOs/3fkyGoaQnZzjf7uvj8o/JzeFl0u461+3YDPd0fVpr7RNT8/bIMIz6V7fz2kt2U03bs7RPXpnh3MTlnD/x71OSHFtVd8vNoe7U6VEDk2q4UvEZGYaf/n6GP5Z8c1z3e7P7joul5R6R5KureN206eNk5m3WWvtgVf1AhuPhsUmekeSFVXV0a+3lu1DTkrad6XtOPqmqO2YYov3NDOewfi7D+7p7hvPTt9uZMfbO/nxVPSTD7+PDMpz7e0xVPay1dvkuvgdgHRFGgTVvHE72liRvGXvkTkpyVFX9Xmvtq9n+F7AvjT/vk4keoHG46b0zhKPJdvfK0Guy1G5Dht7E6QvdbM/PZ7jIys9ODqerqmfN+Ppd9aUM73XaD40/L9qZhY5DXc8eHy8ZL/b0mgzB443Zzvavqv0yDDHc0lo7dmL63lm5l3d7lvbVvTPRUzQOMZxe5s9nOIfziKm6js3svjSua9pMwyxruJLxy5K8qrX2xmWafD7DsNS/nxqCuVwdleEY/bfV1jG+/rCq2neqd3T69V8Yf944jl5YySkZLhr08xl65ffPCkN0k9w/wzF5RGvt2xdQqqrltvOslnor75vknBXabJ3xvc1qVdustXZVhnN9Xz9effb0DIH+j6eHGI9Wc8xfNc67U2vt6onp95hq95gM++pJrbWl3tBU1WEr1T/xPj6W4SJMv1lVPzW+j2cn+X9mXQaw/hmmC6xp43l+3zYOnf3k+PRO48+lXpjpL2bvz3CRoF+ZOt/xqUkOzHBBkGT48vr1JM+eOgfqqcssc0eWvkh+u7emhluyPHEVy9gV707ywJq4dckY/J6b4Sqf5652gdPbf/Qv4887jT+3t/1vtT1GL8rO//90ZpL/yPDHiMnl/soybW+aXndVHZLxli0zOj3Jg8deoKVl3CXL93TfwniF1ddnGNb4v7fT7G8zHIvPXeb1e1XVvuPTpSsxP3+q2QtWqmN0eoZt/u31jJ+JW4wuGHu1zsrwWbj7MjUdMNX+cxmOqyePj2smat2e7R0Xv77iu9i+t2c4J/Y3x57Xb5s4Tt6XYTjqS2u4P2im2h0wPW0Wq9lmy/w+25bkggxX3t7ebVFWc8wvBe5vX3l7HD77zKl2y/2u2iPJr22nhky022+qjuTWvxMAkugZBda+M6rq8gznLV6aoWfoBRl6K5fOhVzqCfn9qnpThgD6gdba5VX1Oxl6bs6oqndkuAjQ85P8fxlulZHW2g013PfxT5N8oKrenKEn4VkZvtztqMdq0rsy9Ba+q6relWHI21EZeowesDNvfpX+IMMtbk6rqslbu/xwkqeOQX61/u8a7iV6Woae1f0y3Jrlm7k5zH8+Q4/Mc6vqugxDcc9vrZ1fw303XzJ++f9ShluLPDpD+F+11trWqvqj3HwbnNMzXGn28bn1OcjvSrKlql6f4QI1985wxeJ/S7LPjKt8eYZbvry3qo7PcH7dkRnO6VzpDxUnJ/musY6nTH1/P68Nt5Z5Q4bbz7x6HA69dAGZ+2S4uNFS7+4nqupvMmzjOyb55wy9W7P2jJ46vub3a7jX5KeSPCHJre63myGw/nOS86rqxAz7965JHprhWLrXVPtTMmynH0ny1qWLeO3ABRl6+P64hvukXpnhljcz3zN1Wmvt81X12xnO2/ynqnpbhnNXH5jh/O3ntda+UVXPydCb/6/j9rwsw7m8P5lhmxyxkyXMus0+XVUfzHARrSsyHLu/lOEKu9dt572t5pg/I8P5tX9VVX+YIXT+rwy/Cybv7fvPGT6DJ1fVn2YIu0/KbJ+LZyZ5XlW9fXyft8/wu/KmDCNYAG626Mv5enh43HYfufl2Ag/bzvx3Z+VbuxyZYXjo1gy3N/hihqtI3nXqdUdn+BJ2U259e5PnZPiieX2GL58nJLnLMvW8YFz/tzJcwfaQDEH3PRNtDh2X/5TtvKf/nWHY3rcynCf2tCxzu4VxGa+dmrZxnH701PQdrnOq7T0znKd55VjDORkumjPdbtZbuzwmw200Lh633yVJ3prkv02125zhDwQ3ZOJWI0nuNtbz9STfGPf5vZbZz8seKxPvfXJ/7pHhQjCXZAgcZ2UYnjm9zNtlCOgXZzgf7uMZQsdJk8fd9rb7xPz7j8fgtnFZL8vwBX/6Vhln55a3Aboo27+l0ZaJdhsy9Ap+ctxnV2XobTw2yZ0n2u2d4d6WV4z7710ZAtwtlreDfXnnDD2112ToIXx9hj+StEzdlmfcJq8bt/ENGc6xPD3DlYCnl/t9GXolW5Kf3MHvgcltdZ8M54dek+FYfVOGHuLpbbNlnHbQSsscpz8jwzG/bdyO/5TkZ6baPDJD7+1VY7vPj9vi4Stsv0Oz48/+itssw61TPjK+520ZTh/4nST7TL/nqWXPdMyPbR84ruP6DH8AetF29sFDx+3zzQy/F1+T4Vi/xfEwXU+G+6K+MTf/rrw8Q6/zo1Y6Bj08PG57j6X7WgGwSuOwta0ZbrXy7EXXAwCwljhnFGAGNdyHcvo8qGdk6E06u39FAABrm55RgBmM50W+MsnfZRhS+sAkv5jhvNQHtdZuWFhxAABrkAsYAczmogwXpfmVDL2hV2Y4j+xoQRQAYPX0jAIAANCdc0YBAADobuHDdPfff/+2cePGRZcBAADAbnDuuede0Vo7YHr6wsPoxo0bc84556zcEAAAgDWnqr603HTDdAEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7jYsugAAZrfx6NMWuv6Ljtu80PUDAOuHnlEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAult1GK2qY6qqVdWfTUyrqtpSVZdU1baqOruq7jvfUgEAAFgvVhVGq+phSY5Mct7UrJckeXGSFyR5cJLLk7y/qvadR5EAAACsLzOH0aq6Y5I3JvlfSa6amF5JXpjkuNbaW1tr5yd5ZpJ9kxw+12oBAABYF1bTM3pCkre01s6amn7PJAclOWNpQmttW5IPJjlklysEAABg3dkwS6OqenaSeyV52jKzDxp/XjY1/bIkd9/O8o7MMNw3Bx988EyFAgAAsH6s2DNaVfdJ8ntJDm+t/cc8VtpaO6G1tqm1tumAAw6YxyIBAABYQ2YZpvvwJPsn+VRV3VhVNyZ5dJKjxn9/fWx34NTrDkxy6dwqBQAAYN2YJYy+I8n9kzxg4nFOklPGf1+YIXQetvSCqto7ySOTfGh+pQIAALBerHjOaGvt6iRXT06rqm8muXK8cm6q6lVJXlpVF2QIpy9Lcl2SN823XAAAANaDmS5gNIOXJ7l9klcn2S/JR5M8trV27ZyWDwAAwDqyU2G0tXbo1POWZMv4AAAAgB1azX1GAQAAYC6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhuxTBaVc+rqvOq6hvj48NVtXli/klV1aYeH9m9ZQMAALCWbZihzcVJfiPJZzOE12cmeUdVPai1dt7Y5swkT594zQ1zrRIAAIB1ZcUw2lp759Sk/1NVz03y8CRLYfT61tql8y4OAACA9WlV54xW1Z5V9ZQk+yT50MSsR1TV5VV1YVWdWFV3nWuVAAAArCuzDNNNVd0/yYeT7J3kuiRPbK19cpz93iRvS/LFJBuT/G6SD4zDeK/fzvKOTHJkkhx88MG7Uj8AAABr0ExhNMlnkjwgyR2TPCnJyVV1aGvt/NbaKRPtPllV5yb5UpLNGULqrbTWTkhyQpJs2rSp7WTtAAAArFEzhdHW2g1JPjc+PbeqHpzkRUl+cZm2l1TVxUnuPbcqAQAAWFd29j6jeyTZa7kZVbV/krsn+drOFgUAAMD6tmLPaFUdl+S0JF9Jsm+Sw5McmmRzVe2TZEuSt2YInxuT/H6Sy5O8fXcUDAAAwNo3yzDdg5K8Yfx5TYbbufxUa+19VXX7JPdP8owkd8oQSM9K8j9ba9fulooBAABY82a5z+gRO5i3Lcnj5lkQAAAA69/OnjMKAAAAO00YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6G7DogsAWCs2Hn3aoksAAFg39IwCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHS3YdEFAMxq49GnLboEAADmRM8oAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN2tGEar6nlVdV5VfWN8fLiqNk/Mr6raUlWXVNW2qjq7qu67e8sGAABgLZulZ/TiJL+R5IFJNiX5QJJ3VNWPjPNfkuTFSV6Q5MFJLk/y/qrad/7lAgAAsB6sGEZba+9srb2ntfa51tqFrbX/k+TaJA+vqkrywiTHtdbe2lo7P8kzk+yb5PDdWTgAAABr16rOGa2qPavqKUn2SfKhJPdMclCSM5batNa2JflgkkPmWCcAAADryExhtKruX1XXJbk+yWuTPLG19skMQTRJLpt6yWUT85Zb3pFVdU5VnbN169adKBsAAIC1bNae0c8keUCShyb58yQnV9X9dnalrbUTWmubWmubDjjggJ1dDAAAAGvUTGG0tXbDeM7oua21Y5J8IsmLklw6Njlw6iUHTswDAACAW9jZ+4zukWSvJF/MEDoPW5pRVXsneWSGc0oBAADgVjas1KCqjktyWpKv5Oar5B6aZHNrrVXVq5K8tKouSHJhkpcluS7Jm3ZTzQAAAKxxK4bRDBciesP485ok5yX5qdba+8b5L09y+ySvTrJfko8meWxr7dr5lwsAAMB6sGIYba0dscL8lmTL+AAAAIAV7ew5owAAALDThFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuNiy6AADWjo1Hn7boEnLRcZsXXQIAMAd6RgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6G7DogsA1oaNR5+26BIAAFhH9IwCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANDdhkUXAACrsfHo0xa6/ouO27zQ9QPAeqFnFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuVgyjVXVMVX28qr5RVVur6tSqut9Um5Oqqk09PrL7ygYAAGAtm6Vn9NAkr0lySJIfT3JjkjOr6s5T7c5McreJx+PnVyYAAADryYr3GW2tPW7yeVU9Pck1SX4syakTs65vrV063/IAAABYj3bmnNF9x9ddNTX9EVV1eVVdWFUnVtVdd708AAAA1qOdCaPHJ/lEkg9PTHtvkmck+YkkL07ykCQfqKq9lltAVR1ZVedU1Tlbt27diRIAAABYy1Ycpjupql6R5BFJHtFau2lpemvtlIlmn6yqc5N8KcnmJG+bXk5r7YQkJyTJpk2b2k7UDQAAwBo2c89oVb0yyS8k+fHW2hd21La1dkmSi5Pce9fKAwAAYD2aqWe0qo5P8uQkj2mtXTBD+/2T3D3J13atPAAAANajWe4z+uokz0pyeJKrquqg8bHPOH+fqvqjqnp4VW2sqkMzXGX38iRv332lAwAAsFbNMkz3qAxX0P37DD2dS49fH+fflOT+Sd6Z5MIkJyf5TJKHt9aunXfBAAAArH2z3Ge0Vpi/LcnjdtQGAAAAJu3MrV0AAABglwijAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3W1YdAEAsJZsPPq0RZeQi47bvOgSAGCX6RkFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7lYMo1V1TFV9vKq+UVVbq+rUqrrfVJuqqi1VdUlVbauqs6vqvruvbAAAANayWXpGD03ymiSHJPnxJDcmObOq7jzR5iVJXpzkBUkenOTyJO+vqn3nWi0AAADrwoaVGrTWHjf5vKqenuSaJD+W5NSqqiQvTHJca+2tY5tnZgikhyf5iznXDAAAwBq3M+eM7ju+7qrx+T2THJTkjKUGrbVtST6YoTcVAAAAbmHFntFlHJ/kE0k+PD4/aPx52VS7y5LcfbkFVNWRSY5MkoMPPngnSoDbno1Hn7boEgAAYG5W1TNaVa9I8ogkP9dau2lnV9paO6G1tqm1tumAAw7Y2cUAAACwRs0cRqvqlUl+IcmPt9a+MDHr0vHngVMvOXBiHgAAAHzbTGG0qo7PzUH0gqnZX8wQOg+baL93kkcm+dCc6gQAAGAdWfGc0ap6dZKnJ3lCkquqaukc0etaa9e11lpVvSrJS6vqgiQXJnlZkuuSvGm3VA0AAMCaNssFjI4af/791PRjk2wZ//3yJLdP8uok+yX5aJLHttaunUONAAAArDOz3Ge0ZmjTMgTTLbteEgAAAOvdztxnFAAAAHaJMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN1tWHQBAMDqbDz6tIWu/6LjNi90/QCsD3pGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO5mCqNV9aiqeldVfbWqWlUdMTX/pHH65OMju6ViAAAA1rxZe0b3SXJ+kl9Nsm07bc5McreJx+N3uToAAADWpQ2zNGqtnZ7k9GToBd1Os+tba5fOqS4AAADWsXmeM/qIqrq8qi6sqhOr6q5zXDYAAADryLzC6HuTPCPJTyR5cZKHJPlAVe21XOOqOrKqzqmqc7Zu3TqnEgAAAFgrZhqmu5LW2ikTTz9ZVecm+VKSzUnetkz7E5KckCSbNm1q86gBAACAtWO33NqltXZJkouT3Ht3LB8AAIC1bbeE0araP8ndk3xtdywfAACAtW2mYbpVtU+Se41P90hycFU9IMmV42NLkrdmCJ8bk/x+ksuTvH2u1QIAALAuzNozuinJv46P2yc5dvz3bye5Kcn9k7wzyYVJTk7ymSQPb61dO++CAQAAWPtmvc/o2UlqB00eN5dqAAAAuE3YLeeMAgAAwI4IowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN0JowAAAHQnjAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdLdh0QXALDYefdqiSwBg9J3wO/mi4zYvugQAdpGeUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6mymMVtWjqupdVfXVqmpVdcTU/KqqLVV1SVVtq6qzq+q+u6ViAAAA1rxZe0b3SXJ+kl9Nsm2Z+S9J8uIkL0jy4CSXJ3l/Ve07jyIBAABYX2YKo62101trL22tvSXJf07Oq6pK8sIkx7XW3tpaOz/JM5Psm+TwOdcLAADAOjCPc0bvmeSgJGcsTWitbUvywSSHzGH5AAAArDPzCKMHjT8vm5p+2cS8W6iqI6vqnKo6Z+vWrXMoAQAAgLVkIVfTba2d0Frb1FrbdMABByyiBAAAABZoHmH00vHngVPTD5yYBwAAAN82jzD6xQyh87ClCVW1d5JHJvnQHJYPAADAOrNhlkZVtU+Se41P90hycFU9IMmVrbUvV9Wrkry0qi5IcmGSlyW5Lsmb5l4xAAAAa95MYTTJpiRnTTw/dnycnOSIJC9Pcvskr06yX5KPJnlsa+3auVUKAADAujFTGG2tnZ2kdjC/JdkyPgAAAGCHFnI1XQAAAG7bhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADobi5htKq2VFWbelw6j2UDAACw/myY47I+k+TQiec3zXHZAAAArCPzDKM3ttb0hgIAALCieZ4z+v1VdUlVfbGqTqmq75/jsgEAAFhH5hVGP5rkiCQ/meTZSQ5K8qGqustyjavqyKo6p6rO2bp165xKAAAAYK2YSxhtrb2ntfbm1tp5rbUzk/z0uOxnbqf9Ca21Ta21TQcccMA8SgAAAGAN2S23dmmtXZfkU0nuvTuWDwAAwNq2W8JoVe2d5IeSfG13LB8AAIC1bV73Gf2jqnp0Vd2zqh6a5C1J7pDk5HksHwAAgPVlXrd2+d4kf5Nk/yRbk3wkycNaa1+a0/IBAABYR+YSRltrT5nHcgAAALht2C3njAIAAMCOCKMAAAB0J4wCAADQ3bwuYMQ6tvHo0xZdAgDcwqL/b7rouM0LXT/AeqBnFAAAgO6EUQAAALoTRgEAAOhOGAUAAKA7YRQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7jYsuoC1YOPRpy10/Rcdt3mh6wcAvrMs+rtJ4vsJsOv0jAIAANCdMAoAAEB3wigAAADdCaMAAAB0J4wCAADQnTAKAABAd8IoAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHcbFl0AK9t49GmLLgEAmOD/5sX7TtgHFx23edElwJqmZxQAAIDuhFEAAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO42LLoAAADWno1Hn7boEhZu0dvgouM2L3T9iW2Q2Aa7Qs8oAAAA3QmjAAAAdCeMAgAA0J0wCgAAQHfCKAAAAN3NNYxW1VFV9cWq+lZVnVtVj5zn8gEAAFgf5hZGq+rJSY5P8ntJfjTJh5K8p6oOntc6AAAAWB/m2TP6a0lOaq2d2Fr7dGvtBUm+luS5c1wHAAAA68BcwmhV3S7Jg5KcMTXrjCSHzGMdAAAArB/VWtv1hVR9T5KvJnl0a+2DE9N/M8lTW2v3mWp/ZJIjx6f3SfKZXS6C3Wn/JFcsugh2C/t2fbN/1y/7dv2yb9cv+3b9sm9Xdo/W2gHTEzcsopLW2glJTljEulm9qjqntbZp0XUwf/bt+mb/rl/27fpl365f9u36Zd/uvHmdM3pFkpuSHDg1/cAkl85pHQAAAKwTcwmjrbUbkpyb5LCpWYdluKouAAAAfNs8h+m+IslfV9XHkvxzkuck+Z4kr53jOlgMQ6rXL/t2fbN/1y/7dv2yb9cv+3b9sm930lwuYPTthVUdleQlSe6W5PwkL5q8oBEAAAAkcw6jAAAAMIt5XcAIAAAAZiaMMpOqunNV/WlVXVBV26rqK1X151V1l0XXxnxU1ZFVdVZVXV1Vrao2Lromdk5VHVVVX6yqb1XVuVX1yEXXxK6rqkdV1buq6qvjZ/SIRdfEfFTVMVX18ar6RlVtrapTq+p+i66LXVdVz6uq88Z9+42q+nBVbV50Xczf+DluVfVni65lLRFGmdX3JLl7hnOC75/kaUkeleRvFlkUc/VdSc5IsmXBdbALqurJSY5P8ntJfjTDFc3fU1UHL7Qw5mGfDNdj+NUk2xZcC/N1aJLXJDkkyY8nuTHJmVV150UWxVxcnOQ3kjwwyaYkH0jyjqr6kYVWxVxV1cOSHJnkvEXXstY4Z5SdVlWPT/LuJHdqrX1j0fUwH1W1KcnHk9yztXbRgsthlarqo0nOa609e2LaZ5O8pbV2zOIqY56q6rokz2+tnbToWpi/qtonyTVJntBaO3XR9TBfVXVlkmNaa3+x6FrYdVV1xyT/kuSXkvxWkvNba89fbFVrh55RdsV3J7k+yb8vuhAgqarbJXlQhh7uSWdk6HEB1oZ9M3xHu2rRhTA/VbVnVT0lwyiHDy26HubmhAx/8D1r0YWsRfO8zyi3IVV1pyS/k+TE1tqNCy4HGOyfZM8kl01NvyzJf+9fDrCTjk/yiSQfXnAdzEFV3T/Dvtw7yXVJntha++Riq2IequrZSe6V4fQ1doKe0du4qvrd8WTrHT0OnXrNPklOTfLVDOeQ8h1qZ/YvAItTVa9I8ogkP9dau2nR9TAXn0nygCQPTfLnSU52gaq1r6ruk+H6DIe31v5j0fWsVXpGeVWSN6zQ5stL/xiD6Onj059urX1rN9XFfLwqq9i/rHlXJLkpyYFT0w9Mcmn/coDVqKpXJnlKkse01r6w6HqYj9baDUk+Nz49t6oenORFSX5xcVUxBw/PMCLpU1W1NG3PJI+qquckuUNr7fpFFbdWCKO3ca21KzJ8gV1RVe2b5D1JKslPttau2521setWs39Z+1prN1TVuUkOS/J3E7MOS/LWxVQFzKKqjk/y5AxB9IJF18NutUeSvRZdBLvsHUnOmZr2uiSfzdBjekPvgtYiYZSZjEH0jAwXLXpCkjtU1R3G2VeOf/VjDauqg5IclOQHx0k/PJ4b/OXW2pULK4zVekWSv66qjyX55yTPyXBrptcutCp22Tgy5V7j0z2SHFxVD8jwO9gIhzWsql6d5OkZ/n+9avx9nCTX+cPv2lZVxyU5LclXMlyY6vAMt/Jxr9E1rrV2dZKrJ6dV1Tcz/E4+fxE1rUVu7cJMxvMKt3eVsMe01s7uVgy7RVVtyXBJ8mnPcvuItaWqjspwPvfdMtyX8kWttQ8utip21Q5+D5/cWjuiazHMVVVt78vYsa21LT1rYb6q6qQkj8nwx95rMtyH8g9ba+9bZF3sHlV1dtzaZVWEUQAAALpzNV0AAAC6E0YBAADoThgFAACgO2EUAACA7oRRAAAAuhNGAQAA6E4YBQAAoDthFAAAgO6EUQAAALr7/wFGRfzI31ALpwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from scipy import stats\n", "\n", "fig, ax = plt.subplots()\n", "\n", "resid = res.resid_deviance.copy()\n", "resid_std = stats.zscore(resid)\n", "ax.hist(resid_std, bins=25)\n", "ax.set_title('Histogram of standardized deviance residuals');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "QQ Plot of Deviance Residuals:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.216377Z", "iopub.status.busy": "2022-05-09T08:26:26.215404Z", "iopub.status.idle": "2022-05-09T08:26:26.420284Z", "shell.execute_reply": "2022-05-09T08:26:26.419788Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8EAAAHoCAYAAABpdO3XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABbLElEQVR4nO3deXxX1Z3/8ddJCBAWQQUUUERRUeKGouKG4Ia7wb2KHTut1mk77bRT2tpNbW1tS9fpdLMz/XVqwB0irrgFUFxBVAyLCwISBFEIiwQIyfn9cRMaQkK+gSTfJN/X8/HII/nee7/3fhLSwttzzueEGCOSJEmSJGWCrHQXIEmSJElSSzEES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpY3RIdwHp0qtXrzhw4MB0lyFJkiRJamKzZ8/+OMbYu65zGRuCBw4cyKxZs9JdhiRJkiSpiYUQltR3zunQkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyRod0FyBJkiRJUuGcEsZPXcjy0jL69cxl3OjB5A/t3+TPMQRLkiRJktKqcE4JN0+aS1l5BQAlpWXcPGkuQJMHYadDS5IkSZLSavzUhdsCcLWy8grGT13Y5M8yBEuSJEmS0mp5aVmjju8OQ7AkSZIkKa369cxt1PHd0WpDcAhhRAhhSgihJIQQQwjX1zr/96rjNT9eSlO5kiRJkqRdNG70YHJzsrc7lpuTzbjRg5v8Wa25MVY34C3gH1UfdXkauK7G6y3NXZQkSZIkqWlVN7/K6O7QMcbHgMcgGfWt57LNMcYVLVaUJEmSJKlZ5A/t3yyht7ZWOx06RaeGED4KIbwdQvhrCKFPuguSJEmSJLVebTkEPwF8FjgT+E/gBODZEEKn+t4QQrgxhDArhDBr1apVLVSmJEmSJKm1aLXToRsSY7ynxsu5IYTZwBLgAmBSPe+5E7gTYNiwYbHZi5QkSZIktSpteSR4OzHG5cAy4JB01yJJkiRJap3aTQgOIfQC+gMfprsWSZIkSVLr1GqnQ4cQugEHV73MAgaEEI4BVld93Ao8SBJ6BwJ3AB8Bk1u4VEmSJElSG9GaR4KHAXOqPnKB26q+/hFQARwJPAS8DfwfsBA4Kca4Pi3VSpIkSZJavVY7EhxjnAaEnVwyuoVKkSRJkiS1E615JFiSJEmSpCZlCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJkiRJUsYwBEuSJEmSMoYhWJIkSZKUMQzBkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxOqS7AEmSJElSyyqcU8L4qQtZXlpGv565jBs9mPyh/dNdVoswBEuSJElSBimcU8LNk+ZSVl4BQElpGTdPmguQEUHY6dCSJEmSlEHGT124LQBXKyuvYPzUhWmqqGUZgiVJkiQpgywvLWvU8fbGECxJkiRJGaRfz9xGHW9vDMGSJEmSlEHGjR5Mbk72dsdyc7IZN3pwmipqWTbGkiRJkqQMUt38yu7QkiRJkqSMkD+0f8aE3tqcDi1JkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJkiRJUsYwBEuSJEmSMoYhWJIkSZKUMQzBkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRmjQ7oLkCRJkiRtr3BOCeOnLmR5aRn9euYybvRg8of2T3dZ7YIhWJIkSZJakcI5Jdw8aS5l5RUAlJSWcfOkuQAG4SbgdGhJkiRJakXGT124LQBXKyuvYPzUhWmqqH0xBEuSJElSK7K8tKxRx9U4hmBJkiRJakX69cxt1HE1jiFYkiRJklqRcaMHk5uTvd2x3Jxsxo0enKaK2hcbY0mSJElSK1Ld/Mru0M3DECxJkiRJrUz+0P6G3mZiCJYkSZKkJuQev62bIViSJEmSmoh7/LZ+rboxVghhRAhhSgihJIQQQwjX1zofQgi3hhCWhxDKQgjTQgh5aSpXkiRJUoZzj9/Wr1WHYKAb8BbwNaCuTbG+Bfwn8O/A8cBHwFMhhO4tVqEkSZIkVXGP39avVYfgGONjMcbvxhgfACprngshBOA/gJ/FGB+MMb4F/AvQHbimxYuVJEmSlPHc47f1a9UhuAEHAvsCT1YfiDGWATOAk9NVlCRJkqTM5R6/rV9bboy1b9XnlbWOrwTqXHEeQrgRuBFgwIABzVeZJEmSpIzkHr+tX1sOwY0WY7wTuBNg2LBhMc3lSJIkSWqH3OO3dWvL06FXVH3ep9bxfWqckyRJkiS1BR99BL//Pdx4Y7M+pi2PBL9PEnbPBl4FCCF0Bk4DxqWxLkmSJEntQOGcEqc1N7eNG+Ghh6CgAKZOhYoKOOYY+PRT6Nq1WR7ZqkNwCKEbcHDVyyxgQAjhGGB1jHFpCOG3wHdDCAuAt4HvAxuAiWkoV5IkSVI7UTinhJsnzd22529JaRk3T5oLYBDeXRUVUFQEd90FkybBhg2w//4wbhxcey0ccUSzPr5Vh2BgGFBU4/VtVR//B1wP/ALIBf4A7Am8DJwTY1zfsmVKkiRJak/GT124LQBXKyuvYPzUhYbgXREjvPFGMuI7cSJ8+CH06AFXXw1jx8Jpp0FWy6zWbdUhOMY4DQg7OR+BW6s+JEmSJKlJLC8ta9Rx1WPp0iT0FhRAcTHk5MD558N118EFF0Dnzi1eUqsOwZIkSZKUDv165lJSR+Dt1zM3DdW0MaWl8MADSfCdPj05dsop8Kc/wRVXwN57p7W8ttwdWpIkSZKaxbjRg8nNyd7uWG5ONuNGD05TRa3cli1Jg6srroB994UbbkimPP/4x/Dee/D883DTTWkPwOBIsCRJkiTtoHrdr92hdyJGeOGFZMT3vvtg9Wro0ycJu2PHwnHHQah3dWvaGIIlSZIkqQ75Q/sbeuuycGESfCdMgPffh9xcGDMmCb5nnw0dWnfMbN3VSZIkSZLSb+VKuPfeJPy++mrSyfmss+C22yA/H7p3T3eFKTMES5IkSZJ29OmnyTrfggJ48slkf9+hQ+FXv4LPfAb69k13hbvEECxJkiRJSlRUwDPPJMF30qQkCA8YAN/6Flx7LeTlpbvC3WYIliRJkqRMFiO8/noSfCdOhBUroEcPuOaaZJ3vqacm05/bCUOwJEmSJGWiJUuS0FtQAPPmQU4OXHABXHcdnH8+dO6c7gqbhSFYkiRJkjJFaSk88ADcdRfMmJEcO/VU+POfkz1+99orreW1BEOwJEmSJLVnmzfD448nI74PPwxbtsDgwXD77cmU5wMPTHeFLcoQLEmSJEntTWUlvPBCEnzvuw/WrIE+feDf/i2Z7nzssRBCuqtMC0OwJEmSJLUXCxYkwXfCBFi8GLp0gTFjkgZXZ50FHYyA/gQkSZIkqS1buRLuuScJv7NmJZ2czz4bfvxjyM+Hbt3SXWGrYgiWJEmSlBEK55QwfupClpeW0a9nLuNGDyZ/aP90l7VrPv0UCguT4PvUU8n+vscdB7/5DVx9Ney7b7orbLUMwZIkSZLavcI5Jdw8aS5l5RUAlJSWcfOkuQBtJwhv3QrPPpt0dp48OQnCBxwA3/42XHstDBmS7grbBEOwJEmSpDYtlRHe8VMXbgvA1crKKxg/dWHrDsExwpw5yYjv3XfDihXQs2cSeseOhVNOSaY/K2WGYEmSJEltVqojvMtLy+p8f33H027xYpg4MQm/8+dDx45wwQVJ8L3gAujUKd0VtlmGYEmSJEltVqojvP165lJSR+Dt1zO32WtM2Zo18MADyXTn555Ljp12GvzlL3D55bDXXumtr51w3FySJElSm5XqCO+40YPJzcne7lhuTjbjRg9uttpSsnlzsr73ssuSZlY33girVsFPfgLvvw8zZiTHDMBNxpFgSZIkSW1WqiO81aPCraI7dGUlzJyZTHW+7z4oLYV99oEvfQmuuw6GDoUQWr6uDGEIliRJktRmjRs9eLs1wVD/CG/+0P7pbYI1fz5MmJB8LF4MXbrApZcm63zPPBM6GM9agj9lSZIkSW1WqxrhrcuKFXDPPcmo7+zZSSfnc86B22+HSy6Bbt3SXWHGMQRLkiRJatPSPsJb24YNUFiYBN+nnkqmPx93HPzmN3D11cnaX6WNIViSJEmSdtfWrfD000nwnTwZNm6EAw6Am29O9vQ9/PB0V6gqhmBJkiRJ2hUxwmuvJcH37rth5UrYc8+kudXYsXDyycn0Z7UqhmBJkiRJaozFi5PmVgUFsGABdOwIF12UBN/zzoNOndJdoXbCECxJkiRJDVmzBu6/H+66C55/Pjk2YgR84xtw+eXJCLDaBEOwJEmSpFarcE5J+jo/b94Mjz6ajPg++ihs2ZKs7f3pT+Gaa5I1v2pzDMGSJEmS0mZnIbdwTsl2ewCXlJZx86S5AM0XhCsrk5HegoJk5Le0NOnm/OUvJ9Odhw6FEJrn2WoRhmBJkiRJadFQyB0/deG2c9XKyisYP3Vh04fg+fOT4DthAixZAl27wqWXJsH3jDOgg9GpvfBPUpIkSVJaNBRyl5eW1fm++o432ocfwj33JOH3tdcgOxvOOSeZ7nzJJUkQVrtjCJYkSZKUFg2F3H49cymp45p+PXN3/aEbNiT7+BYUJPv6VlbCsGHwu9/BVVfBPvvs+r3VJrhplSRJkqS0qC/MVh8fN3owuTnZ253Lzclm3OjBjXvQ1q3wxBPJ1OZ99oHPfhbefhu++91kGvSrr8JXv2oAzhCOBEuSJElKi3GjB2+3Jhi2D7nV6353qTt0jDB7djLie/fd8NFHyTZGn/1sEoZPPtkGVxnKECxJkiQpLVIJuflD+zeuCdb77yfNrQoKYOFC6NgRLrooCb7nnQedOjX1t6E2xhAsSZIkKW0aHXLrsno13HdfEnxnzkyOnX46fPObcPnl0LPnbtep9sMQLEmSJKnt2bQJHn00Cb6PPgrl5TBkCNxxB1xzDQwYkO4K1UoZgiVJkiS1DZWV8NxzSfC9/35Yuxb69k2aWo0dC0cf7TpfNcgQLEmSJKl1mzcP7rorWev7wQfJ/r2XXZYE3zPOSPb3lVJkCJYkSZLUrArnlDS+w/OHHyZdnQsKYM6cJOiOHg0//zlcfHEShKVdYAiWJEmStNvqC7qFc0q22wappLSMmyfNBdgxCK9fD5MnJ8H3mWeS6c/HHw+/+x1cdZX7+KpJGIIlSZIk7ZadBd3xUxdutw8wQFl5BeOnLkxC8Nat8NRTSfCdPBnKyuDAA+F734Nrr4XBg1v8+1H7ZgiWJEmStFt2FnSXl5bt+IYY6TX/DfjaQ3DPPfDRR7DXXnD99ck635NOssGVmo0hWJIkSdJuqTPoVh3v1zOXkqrz+5euIL+4iPx50xi0ugQ6dYKLLoLrroNzz4WOHVuybGUoQ7AkSZKk3VIz6NY+/t0T+/Dq+L9wwZvPcnzJPABePuAo1n3lPxj69S9Az54tXK0ynSFYkiRJ0m4ZN3rwdmuCO23dwrmLZ/GdT2bT94fPckF5OYv2GcjPTr+eV4afw2evGtFwd2ipmaQUgkMIWQAxxsqq1/sCFwLzY4wzm688SZIkSa1FfR2g84f2h8pKnv7L/Zz28lTOf3sm3Td9Cn37wle/Ctddx0FHHcV3XOerViDVkeBHgSeA34UQugGzgK5AtxDC52OM/2iuAiVJkiSlX30doLu/t5AzZz9F/oQJ5H/wAXTrBlddnjS4GjUq2d9XakVSDcHDgG9VfX0psA44ELgW+CZgCJYkSZLasZodoPus/4SL509nTPE08j5alATdc8+FX/wCLr4YunRJc7VS/VINwd2A0qqvzwEmxxjLQwjPAn9ojsIkSZIktR5rV37CZW+/SH5xEacseYMsIq/3PZRbzvoit034EfTpk+4SpZSkGoKXAqeEEB4GRgNXVB3fC9jYHIVJkiRJSp/COSX8+rFiBr3+Ate8PYNX579AbvlmlvTcl9+ffDWFeSN5f6/+9O+Zy20GYLUhqYbgXwN3ARuAJcCMquMjgLnNUJckSZKkdIiRaQWPsv73f2VS8XR6bVzLms7defDIs3joiFG8uu9gqGpwlZuTzbjRg9NcsNQ4KYXgGONfQgizgf2Bp6q7RAPvAT9oruIkSZIktZD33oMJE6CggJHvvMPm7ByeOvhECvNGMf2gYynPzqFnbg79O3XYoTu01JakvE9wjHEWSVfomscebfKKJEmSJLWMTz6B++6Du+6CF19MRnhHjuRbB5/H44NPYX2nrttdvrasnNdvOSdNxUpNIyvVC0MIXwohFIcQNoYQDqo69u0QwpXNV54kSZKkJlVWBvffD5dcAvvuC1/6EqxfDz//OSxZAs8+y8wRl+wQgAH69cxNQ8FS00opBIcQ/gP4PnAnUHOH6+XAV5q+LEmSJElNprISiorg859Pgu+VV8KsWfAf/wFvvAFz58K3vgX77w/AuNGDyc3Zfn9f1/+qvUh1OvRNwA0xxkdDCLfXOP4akNf0ZUmSJEnabW+9BQUFyVrfZcugWze4/HIYOxZGjoTsbArnlDD+Z8/Wuc53/NSFrv9Vu5NqCD4AeKuO4+WAcyIkSZKk1qKkBO6+Owm/b7wBHTrAuefCL38JF10EXbpsu7RwTgk3T5pLWXlF8tbSMm6elGz+kj+0v6FX7VKqIXgRcCzJ9kg1nQ/Ma9KKJEmSJDXOunUwaVISfJ99FmKEE0+E3/8erroKevcGktA7fupL20Z3N27Zui0AVysrr2D81IUGYLVbqYbgXwL/HULoQrIm+KQQwnXAt4B/ba7iJEmSJNWjvByefDIJvg89lDS8GjQIfvhDuPZaOOSQ7S6va9S3Pst3ck5q61LdJ/j/hRA6AD8FugB3kTTF+mqM8d5mrE+SJElStRjhlVeS4HvPPfDxx7D33iy66Ep+tvcwnuo+kH6duzBuQxeYU7Ldmt66Rn3rYxdotWeN2Sf4r8BfQwi9gKwY40fNV5YkSZKkbd59N2luVVCQfN25M1x8MYwdy0P7HMF3Hl643QjvuPvfgADlFXHbsVTZBVrtXcohuFqM8ePmKESSJElS9brdhZQtX8E1S17mygXTGPD2m1QSeG3QMWTd8iuWn3Eed7zwIctnlpEV5lMR43b3KK+M9dx9Rz1zc+jaqYNdoJUx6g3BIYS5QEr/64kxHtVkFUmSJEkZasqL7zL9l3/j1jefYeSi2eRUVjC/90B+OvJzTDn8dFbs0YucLQGmvr9tlLd2AG6M3Jxsbr04z9CrjLKzkeAHWqwKSZIkKUMVzlrKM3+5n9NefoLzFs7k4i1lfNhtb/532CUU5o1iQZ8Dt7u+MaO8tTnqK+0kBMcYb2vJQnZFCOFW4JZah1fGGPdNQzmSJElS6ubO5e1f/Ynhk+4jf/0nrO+Yy+ODT2Fy3ihe3v8IKrOyd/nWOVlhuzXB4KivVK3Ra4JboYXAyBqvU2t5J0mSJLW0Zcvg7ruTBldvvslBWdkUHXQcPx71BZ4++AQ253Ta5Vtnh0BljNtGeIHtukM76isldrYm+E3g9BjjmobWB6d5TfDWGOOKND5fkiRJqt+6dfDgg0nwLSqCGHlr/8O57+ybePiw01jTpUejblffKO8dlx65Q8g19Eo72tlI8IPA5hpf7/rig+Z1UAhhOUmtLwPfjTEuSnNNkiRJymTl5TB1ahJ8H3oINm2Cgw9m/o1f5z+y81jYfZ+dvr3mqO6ow3pTtGDVdiO64CivtKtC3I1ucukWQjgP6A4sAPoA3wcOA/JijJ/Ucf2NwI0AAwYMOG7JkiUtWK0kSZLatRjh5ZeT4HvPPfDJJ9CrF1x9NdOPP4fvlnShZO2mBm9T36iupNSFEGbHGIfVeS6VEBxCeBa4NMZYWuv4HkBhjPGMpih0d4UQugGLgJ/FGH+9s2uHDRsWZ82a1TKFSZIkqf165x2YMCEJv++9B507wyWXwNixMHo0hW99xM2T5lJWvvPWNQEc1ZWayM5CcKqNsUYCHes43hk4bRfranIxxg0hhGLgkHTXIkmSpHZs1Sq4774k+L70EoQAZ5wB3/8+XHop7LHHtkvHT13YYADu3zOXmd9pFeNKUru30xAcQji2xsujQgira7zOBkYDJc1R2K4IIXQmmQ5dlO5aJEmS1M6UlcGUKUnwfeIJ2LoVjj4axo+Hz3yGwo+q1un+9Dl65OYQApRuLG+wsU5uTva2db6Sml9DI8GzSBpiReDJOs6XAf/e1EWlKoTwS+BhYCnJmuAfAF2B/0tXTZIkSWpHKipg2rQk+D74IKxfD/37wze+kUx3PvJIAArnlGw35bm0rDyl2/d3+rPU4hoKwQeSLE9YBJwArKpxbgvwUYwxnfvy7gfcDfQiqe0lYHiM0Y5XkiRJ2nVvvpkE34kToaQkmd58xRVJ8B0xArKzKZxTwvifPcvy0jKyQqCiEQ1nbX4lpc9OQ3CNMJnVArU0Wozx6nTXIEmSpHZi2bIk9BYUwNy5bM3KpuigYTx5xfU8N/hEVpZn0WNGOeG5Z1izsZzAP/cQTTUA2/xKSr9UG2MRQtgPGEEy7Xi7UNxQJ2ZJkiSpVVq7NpnmXFBAnDaNECOz+x1G4dn/xiOHncqaLj2S66pmN9ec5tzYjUZtfiW1DimF4BDCtcDfgK0k045r/m8+AoZgSZIktQ1btsDUqVBQQMVDD5G9eTOL9uxH4SnXUDhkJEv37Nvkj7T5ldR6pDoS/CPgV8AP0rwGWJIkSWq8GJOtjAoK2DzxbjqVruHjLj145IhzmDxkJG/0PTTZ5mg3ZYdAZYzbdYd2+rPUuqQagvcB/scALEmSpDblnXeSNb4FBbBoERWdOvH0oOHcf9ZInh84lK3ZKa8ObJDNrqS2IdX/1T8GnEjSJVqSJElqvVatgnvvTYLvyy9DCHx0wqnceezl3LPfMDZ06tJkj6pujuVWR1LbkWoIfgr4eQghD5jLttYAiRjjpKYuTJIkSUrZxo0wZUoSfJ94AioqKB2cx13nf5GCgSfxUfdejW5kVR1we9aY2uw0Z6ntSzUE/6Xq83frOBeB7KYpR5IkSUpRRQUUFSXB98EHYcMG2G8/+OY3eea4s/nKm+WUlTduNZ8ju1L7l1IIjjG2yn2CJUmSlGFihDffTILvxImwfDnssQdcdRWMHUth90GMf+odSmaXpXxLg6+UWZquE4AkSZLUXD74IAm9BQXw1luQkwPnnw9jx8KFF1I4/xNunVJMadmbjbqtwVfKPCmH4BDCnsB5wACgY81zMcYfNXFdkiRJynSlpck054ICmD49GQU++WT44x/hyith770BKJxTws2T5jZq6rOdnKXMlVIIDiEMBx4FNgO9gRKgb9XrxST7CEuSJEm7Z8uWpLHVXXfBww/D5s1w6KFw221wzTUwaNC2SwvnlDB+6kJKSlOb+uy0Z0mQ+kjweGAC8DVgHXAG8ClwN/C/zVOaJEmSMkKM8OKLyYjvvffC6tXQuzd88YvJdOdhwyCE7d7S2NFfg6+kaqmG4KOAz8cYYwihAugUY1wUQvg2MJEkIEuSJEmpe/vtJPhOmACLFkFuLuTnJ8H37LOTdb91KJxTwn/e9wYVseFNj5z2LKm2VEPwlhpfrwQOAOYDG4B+TV2UJEmS2qmPPkpGewsK4JVXICsLzjwTbrkFxoyB7t23u7zmlOfsEKiIcdu05obs2SWHWy7KMwBL2k6qIfg14HjgbWAacHsIYR9gLNC4FnySJEnKLBs3wkMPJcF36tRkf99jjoFf/QquvprClTEJuj+ZsS3o1hV4q0d+GwrATn2WtDOphuDvAdX/We77wD+A35OE4s81Q12SJElqyyoq4Nlnk+A7aRJs2AD77w/jxsG118IRRwA7ru2tDrqpBt6anPosKRUpheAY46waX68i2SpJkiRJ+qcY4Y03kuA7cSJ8+CH06AFXX52s8z3tNArf+JDxjyykpODRbaO9TSE7BAOwpJSkvE+wJEmSVKelS5PQW1AAxcVJQ6sLLkiC7wUXQOfOFM4p4dYfP01pWfm2tzVVAHYEWFJjpLpP8Fx2MhslxnhUk1UkSZKk1q+0FB54IAm+06cnx045Bf70J7jySthrLyCZ7nzrlOLtwm9TcM9fSbsq1ZHgB2q9zgGOAU4B/tCUBUmSJKmV2rIFHn88Cb4PPwybN8Ohh8KPfwzXXAMHHQRUdXS+81lKSstS7uS8M9X3qJ4+bfCVtDtSXRN8W13HQwjjSLZLkiRJUnsUI7zwQhJ877sPVq+GPn3gppuYdvw5fG9pJ0rWbiL7rwuoiPN3CL2NDcC1u0MbeCU1td1dEzwJmAV8pQlqkSRJUmuxcGESfCdMgPffh9zcZB/fsWN5qNcQbnlsIaVzy4FNwK51c67Jdb2SWsruhuARwMamKESSJElptnIl3Hsv3HUXzJoFWVlw1llw222Qn0/hu+uq1ve+1SSPywpQGV3XK6llpdoYa0rtQ0BfYChQ51RpSZIktQGffgoPPZSM+j75ZLK/79Ch8OtfJ1sb9e0L7Lif7+7Ys0sOt1yUZ+iVlBapjgR/Uut1JVAMfDfG+GTTliRJkqRmVVEBzzyTBN9Jk5IgPGAAfOtbcO21kJcHVDW4+r+kwdXusJOzpNYk1cZYn2vuQiRJktSMYoTXX0+C78SJsGIF9OiRdHUeOxZOPTWZ/kzTbmvkqK+k1iblNcEhhCOBwcAW4O0Y44Jmq0qSJElNY8mSJPQWFMC8eZCTw/JTz+C/z7yJB/c9iq05nah4bD3Zjz9BRYy7vKVR9fpeuzpLau0aDMEhhOOA/wfkkcxmAYghhFeBf4kxLqy6bs8Y45pmq1SSJEmpWbMGHnggCb4zZgDw8TEn8Lf8/2DCgBNZm9v9n9dWdXXe1e7OjvRKamt2GoJDCIOBIuAd4DpgXtWpPOA/gRdCCEcAlwC9gNubr1RJkiTVa/NmePzxJPg+/DBs2cKS3vtz32nXMWXI6XzQc98mfVx2CPzqyqMNv5LanIZGgm8FpgGXxBhr/ofB10MIE4GHgGeAA4GLmqNASZIk1aOyEl54AQoK2HL3PXRct5ZVXXsy5ajzmJw3irf2GQQhNHyfRnJPX0ltWUMh+AzgoloBGIAYYwwh/BR4ARgTY3y6OQqUJElSLQsWJCO+EybA4sVs6dSZxwYNZ3LeKJ4feAwVWdlN/kj39JXUXjQUgnsCy3dyfhmwNcb4UJNVJEmSpG0K55QwfupCNpcs55L5z3FxcRFHr3iHipDF8wOPYfKFl/HkIcPZ2DG3WZ7vml9J7U1DIXgZcFTV57ocA3zQlAVJkiQpCb8/e2A2J745g58UT+PUxXPoECt5c9+D+dEZN/Dw4SNY1W3PJntedVdnuztLau8aCsGTgfEhhNkxxpU1T4QQ9gV+BkxqruIkSZIySeGcEn792DwGvvEi+fOm8czbL9K1fBPL9ujDn4dfTuGQkbzba8BuP8epzZIyWUMh+MfABcC7IYQCoHpv4CHANSSjwHaEliRJ2kWFc0oY/8QCei58izHFRTwwfwZ9Pl3D2k5deWjISCbnjWTWfkOIIWuXn2HolaR/2mkIjjGuDSGcBPwUuAqonnOzBvgH8L0Y49rmLVGSJKl9qF7fW1JaRgD6r13JxfOm8/fiIg755AM2Z3fg2UEnUJg3kqKDjmdLh5zdep6hV5J21NBIMDHGUuBLIYQvA72rDq+qq2O0JEmSdlQ4p4RbpxRTWlbOHps28JkFz5NfXMSJy4oBeHm/PG4e/RUeG3wKa3O779azbGQlSTvXYAiuVhV6P2rGWiRJktqdwjkl/PC+2Zy08GXyi6dxxnuv0KliK+/utR+/GPFZpgw5nWU99knpXtXTmgMQax1z1FeSUpNyCJYkSVIjVFbCzJnwzZ/z3BvT6LH5U1Z17UnB0AuYlDeK4n0GQQgp3SoA1w4fwO35RzZvzZKUAQzBkiRJTWn+fCgogAkTYMkSzsnpxBOHnkzhkJHMHHgMFVnZjbqdI7yS1LQMwZIkSbtrxQq4554k/M6eTczKYuZBx3L/hZfz1CHD2dgxN6XbOLVZkpqfIViSJGlXbNgAhYVJ8H3qKaisZM2Qo/nruTdx/6BTWNVtzwZvUc1mVpLUclIOwSGE84AvAwcBo2OMH4QQvgC8H2N8prkKlCRJajW2boWnn+aD/7qTXk8/Tm75Jpbt0YfJJ15B4ZCRvNdr/5RvtfhnFzRjoZKk+qQUgkMI1wJ/Bv4HOBOo3rQuG/gWYAiWJEntU4zw2mvJiO/dd8PKlXTv3I1JeSOZnDeK2f0PJ4asRt2yf8/UpkdLkppeqiPB3wJuiDHeUzX6W+0l4EdNX5YkSVKaLV6cNLcqKIAFC6jI6cizB5/A/Sd/gWkHDWNLh5wGb1GX3Jxsxo0e3LS1SpJSlmoIPgR4sY7jG4A9mq4cSZKkNFq9Gu6/Pwm+zz+fHBsxgsJRV3JLxyGs7dxtt27v2l9JSr9UQ/By4FBgSa3jI4D3mrQiSZKklrR5Mzz6aBJ8H30UtmyBww+Hn/6UqUedwbdnraW0rHy3HmH4laTWI9UQfCfwXzWmQu8fQjgN+AVwa3MUJkmS1GwqK5OR3oKCZOS3tBT23Zd3r7ye73U9mpd7DIC1AZ77eJcfEYBrhw/g9vwjm6xsSdLuSykExxh/EULoATwFdAaKgM3AL2OMf2jG+iRJkprOvHlJ8J0wAZYuha5dWTryXO7Y8zie7JtHRVb2bt3efX4lqfVLeYukGOP3Qgg/AYYAWcC8GOOGZqtMkiSpKXz4IdxzTxJ+X3sNsrNZMXwEvxv2GQoPOJ6yjp13+dZOc5aktiflEAwQY9wIzGqmWiRJkprGhg0weXISfJ9+Opn+PGwYb467jf+Ig1mUvXsNrpzqLEltV70hOIQwJdWbxBgvbppyJEmSdtHWrfDUU0nwLSyEjRth4ED47nfh2mv5/oJyJry0lLibj3H0V5Latp2NBH/SYlVIkiTtihhh9uwk+N59N3z0Eey5J3z2s8w4YTRfXZJL6aat8Pfd38zC0V9Jah/qDcExxs+1ZCGSJEkpe//9pLlVQQEsXAidOsFFF/HSyefx76v7sKo8wEKArbv1GBtdSVL706g1wSGEXGBQ1cv3YoxlTV+SJElSHVavhvvuS4LvzJkAvLT/ERSe++88NvgU1nXuBit3/zFOd5ak9i2lEBxC6AT8HPgi0JFkRtDmEMKdwLdjjJuar0RJkpSxNm2CRx9Ngu+jj0J5Oe/2GsCDp/8LDw05neV79GmSxxh8JSlzpDoS/CfgHOALwItVx04C7gC6A//a9KVJkqSMVFkJzz0HBQWU33MfORvWsbLbXjx0zIUU5o1iXp8DIYQmedRY1/hKUsZJNQRfAVwaY3yqxrFFIYSPgAcxBEuSpN01bx7cdRcb//4PuqxYzqc5nXli8MlMHjKKFw44isqs7CZ7lE2uJClzpRqCPwVK6jheArguWJIk7ZoPP0y6OhcUwJw5bA1ZvHTgsRRedC1PHXwiZR07N9mjbHIlSYLUQ/DvgVtCCNdXN8OqapL1g6pzkiRJqVm/HiZPToLvM89AZSVr8o7mD6NvYvIhp/JJ155N9qiuHbP5yZgjDbySpG1SDcHDgdOBkhDCm1XHjqx6f9cQwpTqC2OMFzdtiZIkqc3buhWefDIJvoWFUFYGBx4I3/seTw89ixteWU+Mu/8YR3slSQ1JNQR/TLL2t6b3m7gWSZLUnsQIs2Ylwffuu2HVKthrLxZdeAW3dT+G6b0OgS0BXl6/y4+wq7MkqbFSCsExxs81dyGSJKmdWLQIJkxg/f/+ne5LFrE5O4dnDj6BSafdxPSDjqU8O2e3bm/wlSTtjlRHgiVJkur3ySdw333JqO8LLwDw1oAjmXzuV3li8Mms69xtl29t6JUkNaWUQnAIYU/gVmAU0AfIqnk+xtg0O9VLkqS2Y9MmeOSRJPg+9hiUl7Non4Hcd/r1TBkyguV77N4/D3rm5vD6Lec0UbGSJCVSHQn+B5AH/B+wEmiC1hWSJKnNqayEGTOS4PvAA7B2LWW992HicRfzwOGnM7/3gRDCbj8mJztw68V5TVCwJEnbSzUEjwROjzG+1oy17LIQwpeAcUBfoBj4jxjjc+mtSpKkdqS4GO66CyZOhA8+gG7d4LLL+H8HnsKPP92HyqzsJnuU058lSc0p1RD8HrWmQLcWIYSrgN8BXwKer/r8eAhhSIxxaVqLkySpLVu+POnqXFAAr78O2dmsOGkkvzlhLA8dcBybcjpDGU3yLwSDrySppaQagr8G3BFC+CbwVoyxohlraqxvAH+PMf616vW/hxDOBf4NuDl9ZUmS1AatXw+TJiXB95lnIEbm9h/M/Wd9kUcPO41PuvZskscYeiVJ6ZJqCH4XyAVeAwi11vrEGJtuDlQjhBA6AscBv6x16kng5JavSJKkNqi8HJ56Kpnu/NBDUFbGp/sdQMGIa7jn0BG8v9fuBdUAXDt8ALfnH9k09UqStBtSDcF3Az2Ar9K6GmP1ArJJaqppJXBW7YtDCDcCNwIMGDCg2YuTJKnVihFefZX3fvNn9pwyib02rmV17h48ctgZFOaN5LV+hzVJg6v+PXMZN3qwI76SpFYj1RA8DDghxvhWcxbT3GKMdwJ3AgwbNqy1BHlJklrMk1Nm8u5v/sK5bzzDQWuWs192Dk8dfCKTjxjFjAOPpTw7Z7ef0bVjNj8Zc6TBV5LUKqUagucBezRnIbvoY6AC2KfW8X2AFS1fjiRJrc+jRW8x/7d/ZdSsJzln+QLOIvDSgCP50/DLeWLwKazv1LVJnuM6X0lSW5BqCP4+8OsQwveBuUB5zZMxxtVNXVgqYoxbQgizgbOB+2ucOht4MB01SZKUToVzSrh1SjFl6zZw5nuvMqa4iHMWzeKCygoW9DqAO0Zez5TDT+fDPXo32TMNv5KktiTVEPxY1ecn2X49cKh6nZbGWFV+DdwVQngFmAncBPQD/pzGmiRJanGFsz/ggV8XcPPcIs5bOJM9tmxkRbe9+NuwS5icN4oFfQ5skucYeiVJbVmqIXhUs1axG2KM94YQ9iYZre4LvAWcH2Nckt7KJElqXtWjvvssfYcxxUVcPG86+es/Zn3HXJ449BQm543kpQFHUpm1+/+teqzdnSVJ7URKITjGOL25C9kdMcY/An9Mdx2SJDWX6sBbWpasSNpn/cdcPG8GE+cVMeSj9ynPymb6gcfy01H/ytMHn8CmnM5N8lxHfSVJ7U2qI8EAhBD6AQOAjjWPxxhnNGVRkiRpx+DbbfNGLn/7BfKLizh5yZtkEXmt32B+cPZNPHrYaazu0mOXnmPQlSRlkpRCcFX4nQiMIFkDXL0WuFo61wRLktQu1A69AB0qtjJq8RwufetZzn73ZTpv3cLinn35r1OupnDISBbvtWvB1f17JUmZKtWR4N+SbEU0BHgVOJdkG6IfAV9vlsokScoAhXNKGD91ISWlZf88GCPHfPg2+cVFXDR/BnuXrWN17h7ce9TZFA4ZxZx+gyGERj/LEV9JklIPwacDF8QYF4QQIrAqxjgzhLAZ+DHwVLNVKElSO/X9wrlMeGnptqlVB6xZTn7xNPLnFXHgmg/Z1KEjTx98IpPyRvHcgUMpz85p1P1zc7K549IjDb2SJNWQagjOBT6u+no10Ad4G5gHHNUMdUmS1K59v3AuBS8tZc+Na7lgwfNcWvwsxy5fSCWBFw84kj8Ov5InBp/M+k5dG3XfrACV0enOkiTVJ9UQvAA4DFgMvA7cFEL4APgyUNIslUmS1E7UXuvbqXwzZ737Cn+dV8TIRbPJqaxgfu+B/HTk55hy+Oms2KNXSvc18EqS1HiphuDfAftWff0j4AngM8Bm4F+aoS5Jktq02sE3q7KCkz54izHFRZy3cCbdt5TxYbe9+d/j8ykcMpIFfQ5s8J5dO2bzkzFOb5YkaXekuk/whBpfvxZCGEgyMrw0xvhxvW+UJCmD1NXkavCqxYx561kumTedvhs+YX3HXB4ffAqT80bx8v5HUJlV/wYL1VsxONIrSVLTadQ+wTVsAd6OMW5oymIkSWpr6gq++677mIvnT2dMcRGHr1pMeVY20w46jtuHfIGnDz6BzTmddnpPQ68kSc1npyE4hHAmsHeM8b4ax74D3Ap0CCE8DVwdYyxtziIlSWqNanZ37rZ5I+ctnEn+vCJOWjKXLCKv9RvMD86+iUcOO401XXrs9F4BuHb4AG7PP7JFapckKVM1NBL8HeDx6hchhBOAnwL/C8wHxgHfq/osSVLG+H7hXO6ZuYhR77/GmOIizn73ZTpv3cL7e/bld6d8hsK8kSzZs19K93L/XkmSWk5DIfhIkiBc7QrghRjjDQBVHaJvxxAsSWrntjW62riFocsXkj+viFfmP8deZev4JHcP7jnqHArzRvF630MhhJTuafiVJKnlNRSCewIf1Xh9CvBYjdevAv7NLUlqN2qu8a1uTAUwcHUJ18+bRn7xNAaWfsimDh158pDhTM4bxXMDh7I1e+d/pdrZWZKk1qGhEPwhMAj4IITQCRgK/KDG+e4k2yRJktSmFc4p4eZJb1JWXrnt2J4b13Lh/BmMKZ7G0A8XUknghQOO4r9PvoonDj2ZDZ26NHhfm1xJktS6NBSCHwd+UdUM62LgU+C5GuePAt5tptokSWpWtffyBehcvomz3n2F/OIiTn//NXIqK5jX50B+MvJfmTJkBCu792rwvgZfSZJar4ZC8A+BScDTwAbgX2KMW2qc/1fgqWaqTZKkZlE7/GZVVjB86VzGFE/j3Ldn0n1LGR9225v/PT6fyXmjWNh7YIP3tLuzJEltw05DcIzxY2BECKEHsCHGWFHrkitIwrEkSW1CzW2NDvvoffKLi7hk3nT6bviEdR278NjgUynMG8VLA44ghqyU7mmDK0mS2o6GRoIBiDGuref46qYtR5Kkplez2dW+6z7mxvlJg6vDVy2mPCubaQcN48d5N/DMoOPZnNMp5fsafiVJantSCsGSJLUF9XV27r75U85dOJMxxdMYvnQuWURm9zuM75/zJR4dfApruvRI6f6GXkmS2j5DsCSpzaurs3OHinJGvP8aY94q4ux3X6ZTRTmL9uzHb0+9hsIhI1m6Z9+d3tPAK0lS+2QIliS1SXV1diZGjl2+gPziaVy44Dn2KlvHx116MPGYcykcMpI3+h4KIdR7T4OvJEntnyFYktRm1Bl8gYGrSxhTPI38eUUcULqCTR068uQhw5mUN4rnBw5la/bO/7oba1dnSZIyhiFYktSq1Rd899q4lgvnz2BM8TSGfriQSgIzDzia/zr5M0w99CQ2dOrS4L3d1kiSpMxjCJYktTr1Bd/O5Zs4+52XyZ83jdMXzaZDrKS4z0HcPupfefjwEazs3ivlZ/Tvmcu40YOd+ixJUoYxBEuSWoX6gm9WZQUnLZ3LmOIizn37BbptKaOke2/uPPFSCoeM5O3eAxu8d1aAymjwlSRJhmBJUprV1+Dq8FXvM+atIi6ZP519NqxmXccuPHLYaRTmjeTl/Y8ghqx672mDK0mSVB9DsCSpRdS3h29Nfdet4pJ508kvLuKwj5ewJasD0wYNY/KQkTx78Als7tCx3vsbfCVJUioMwZKkZvf9wrlMeGnptuBbMwDvsWkD5y58gTHzijhx6VtkEZnV/3C+f86XeOSwUynN3aPe+xp8JUlSYxmCJUlNrqFR35yKck5f9Bpjip/lrHdfoVNFOe/t1Z/fnHoNhXmj+KDnvvXe2+ArSZJ2hyFYktQkagbfmrYF4Bg5tmQBY+YVceH859hz03o+7tKDicecy+S8Uby57yEQQp33NvhKkqSmYgiWJO222tOdazpwdQn5xUXkz5vGAaUrKOvQiScPGc7kvFE8P/AYtmbX/VeRwVeSJDUHQ7AkqdEamu6896elXLjgOcYUP8sxH75DRchi5gFH87tTPsPUQ07i005d6rxvAK4dPoDb849s7m9BkiRlKEOwJKlRCueUcPOkuZSVVwD/DMCdyzdxzjsvk19cxIj3X6NDrOStfQbx41Gf5+HDR/BR973rvJ97+EqSpJZkCJYk7VTNUd/sEKiI/xz3zaqs4OQlbzJmXhGj336RblvKKOnemztPvJTJQ0bxTu8Ddrif05wlSVI6GYIlSTuor8lVRYwQI0M+ep/84iIumT+dfTasZl2nrjx82GkU5o3ilf3ziCFrh3s60itJkloDQ7AkaZvCOSXcOqWY0rLyHc71W/cRl8ybTn5xEYM/XsqWrA4UDRrG5LxRFA06ns0dOu7wHoOvJElqbQzBkpTh6hv1Bdhj0wbOWziTMcVFDP/gLQBe7T+E753zJR457DTW5nbf4T1Od5YkSa2ZIViSMkxDnZ1zKsoZuWg2Y956ljPfe5VOFeW8t1d/fnnaWB4aMpIPeu5b530d9ZUkSW2BIViSMkjt/Xy3BeAYOa5kPmOKi7hgwfPsuWk9q7r0ZMIx5zE5bxRz9z0YQqjznrk52dxx6ZGGX0mS1CYYgiWpHamrk3P157pGfQ/6ZBn5xUXkz5vGgLUrKevQiamHDqdwyCieO3AoFVnZdT6n+p6O/kqSpLbGECxJ7UTtUd7qrYyqP1cf7/XpGi6c/xxjios4esU7VIQsZh5wNL859VqePGQ4n3bqst193cdXkiS1J4ZgSWoHCueUbBeAa8vdsomz332JMcVFnPb+HDrESubuM4gfn/EFphw+glXd9trhPQG4dvgAbs8/sllrlyRJakmGYElqI3Y21bkuWZUVnLLkDfKLizj37RfpWr6JZXv05i8nXsbkvFG822vAju9x1FeSJLVzhmBJaqV21sW59lTnbWIk76NF5BcXccm86fT5dA3rOnXloSGnU5g3ilf3G0IMWTs8y9ArSZIyhSFYklqJnYXe+qY5V+u/9iMumTeN/OJpHPrJUrZkdeDZg49n8pBRTBs0jM0dOu7wHvfzlSRJmcgQLEmtQOGcEm6eNJey8gqg4dALsMemDZy/4HnGzJvGiR+8BcAr+w3hu6O/zKODT2Vtbncg6eRMjanTjvpKkqRMZgiWpDQrnFPCf973Rr1re2vquLWckYtmkV9cxJnvvUKniq28t9d+jD/tOh4acjrLeu4LJMH3t1cebdCVJEmqxRAsSS1sZ9Oe6xJiJceVzGdMcREXLHienps2sKprTwqGXsDkvFG8tc8gCGHb9bk52dxx6ZEGYEmSpDoYgiWphRTOKeHWKcWUlpVvO7azADzokw/IL55G/rxp7L92JRtzOjH1kJMozBvFCwceQ3nIdqqzJElSIxmCJakZ1LWdUSqjvr0+XcNF82cwpriIo1a8S0XI4vmBx/Dr08Yy9ZDh7NlnL8aNHsz/GXIlSZJ2iSFYkppY7SZX1Wt96wvAuVs2cc47LzKmeBqnLp5Dh1jJm/sezI/OuIFXh5/D5y8/id8YeiVJkpqEIViSmtj4qQu3BeD6ZFdWcMri18mfN43Rb79I1/JNLNujD38efjlPHHUGX/jihfzQ4CtJktTkDMGS1ARqTn+uV4zkrXyPMcVFXDx/Bn0+XcPaTl15aMhIJueNZNZ+Q+jZtZN790qSJDUjQ7Ak7aba059r22/tSi6eN50xxUUc8skHbM7uwLODTqAwbyTTBx3Ppuwc+vfM5Tc2tJIkSWp2hmBJ2onqEd7lpWX0yM0hBFizsXxbs6vqz7XtsWkDFyx4nvziIk5cVgzAy/vlcfPor/DoYafSfd/ejBs9mL8YeiVJklqUIViSqtQOvFu2VrCxvHLb+ZpbG1UH35oBuOPWckYtepX84mmc8d4rdKrYyrt77ccvRnyWKUNOJx4wkHGjB3OHwVeSJCltDMGSMl5d+/fW/HpnQqxk2LJ5jCmexgULnqPH5k9Z1bUndw29gMl5oyjeZxD99+zCzO+c0VzlS5IkqREMwZIyWkPreesz6OMPGDOviPziaey37iM25nTiiUNPpnDISGYOPIaKrGwAcnOyGTd6cHOULkmSpF1gCJaUkVLq5lxL7w1ruGj+DPLnFXHUinepCFk8N3Ao40dcx1OHDGdjx1wAskOAGOnfM5dxNruSJElqVQzBktqlhhpaBWDHdlY76rKljHPeeYkxxUWcuvh1smMlb+x7CLedeQOPHDaCVd323HZtbk42d1x6pKFXkiSpFTMES2o3ao7u1gy5dTW02lkAzq6s4NTFr5NfXMTod16kS/lmlu3Rh7+efAVPDj2L17r23aE7tKO+kiRJbYMhWFK7UHttbyqjvNuJkSNWvselbz3LRfNn0HtjKWtzuzE5bxTPn3guo2+4lJuO25+bmrxySZIktSRDsKQ2bVfW9ta039qVXFI8jTHFRRy8ehlbsnNYNfJs+MoN9DjvPK7t1Ilrm7hmSZIkpY8hWFKbU9+051T1KFvPBQufJ7+4iBOWzQPg1QFHMOdL/87Qb9xA/z33bOAOkiRJaqsMwZLalF2d9txxazmj3nuVMfOKGPXeq3Sq2Mo7e+/PL0Z8lpeGn8tnrx7hel5JkqQMYAiW1KaMn7ow5T19s2Ilw5bN46oF0zl73nPssWkDH3Xdk38ceyEzh59L/vUX8K1j92vmiiVJktSatNkQHEKYBpxe6/C9Mcar01COpGZQ3zZHDTn446V89r3nuHzBDLqsKIGuXeGKS2HsWPqccQY3dOjADS1QvyRJklqfNhuCq/w/4Ls1Xu9aZxxJaVVf2K1vm6O69N6wmovnz+DSedPIW/EuZGfDOefA2F/AJZckQViSJEkZr62H4I0xxhXpLkJS49QOvZ9u2Up5RRJ3a4bdhtb7dtlSxui3X2RMcRGnLHmD7FjJmryj4ebfwVVXwT77NON3IUmSpLaorYfgq0MIVwMrgceB22KM69Nck6Q61NfRuaER3tqyKys47f055M8r4px3XqJL+WY+7bc/2d/7Lowdy56DBzd57ZIkSWo/2nIInggsAZYDecAdwFHAOfW9IYRwI3AjwIABA1qgRClz7Wy0t7FbGhEjR654lzHFRVw0fwa9N5ZS2rkbU489hzG/+jZdTz4ZQmjy70GSJEntT4ix0f8cbTYhhNuB7zVw2agY47Q63nsC8DJwXIzxtYaeNWzYsDhr1qxdqlPSztXexmhX7Ve6gvx50xhTPI1Bq5exOTuHpw8+gcK8Ubw8+AR+dMWxbmskSZKkHYQQZscYh9V1rrWNBP8WKGjgmqX1HJ8FVACHAA2GYEnNpzHbGNXWs2wdFyx4nvziaRxfMg+Al/Y/goJTLufpvNNYFjvRr2cuPxo92AAsSZKkRmtVITjG+DHw8S6+/UggG/iw6SqS1Bg11/02RtfKcs5bOptzXnuaUe/NIqdyK2/vPYA/jf4CB331BkaffwLDgVuap2xJkiRlkFYVglMVQhgEXAs8RhKahwC/AuYAM9NYmpRRdrbutyFZsZLjPyjm2nef47z5z5OzYR307Qtf/xqMHcuhRx/Noa7zlSRJUhNrkyEY2AKcCXwN6AZ8ADxK0h169xYhSkpJ7XW/DXV5zskKdOvcgd5L3uW6957nsoXT6bJiOXTrBpdeCmPHwhlnJPv7SpIkSc2kTYbgGOMHwOnprkPKZI1Z93tU1kZ+svktjnx8Crz+ehJ0R4+Gsb+Eiy+Grl2bt1hJkiSpSpsMwZLSb3kD6367bt7I6Hde5OqFMzhh0RyorITjj4f/+i+46iro06eFKpUkSZL+yRAsaZf065m7QwOsDhVbOXXxHMYUT+Ocd14id+tmPu0/AL73Pbj2Whg8OE3VSpIkSQlDsKSU1W6ElZMdKN9ayVEr3mFMcREXz5/B3hvXsqZzdx4/bjS9bvpXRvzLxWCDK0mSJLUShmBJ9dpZ9+fuH37A9fOmkT9vGgM/WcbmDjl8PGo0fOUG9jz3XC7t2DHN1UuSJEk7MgRLArYPvP165jLqsN48OLtku+7PPcvWceGC58kvLmJYyXwAXjvoaAb+/FY6XX45/Xv0SOe3IEmSJDXIECxlqJ2N8paUljHhpaVEoNPWLZzx7iuMmTeNke/NomPlVhb2GsDPTr+eKUNG8OEefXj/8xek95uRJEmSUmQIltqZ2iO640YnzagaGuWtKcRKTvzgLfKLp3H+gufZY8tGVnTbi/837GIK80Yyv/eB29b59u+Z27LfoCRJkrQbDMFSG9bQFOaS0jLG3f8GBOoc5a3t0FWLGVM8jYvnTaf/+lVs6JjLE4eezOS8Ubw44Egqs7K3uz43J3tbyJYkSZLaAkOw1AbUN7p786S52wXeusJteeWOcbfmkT7rP+Hi+dO5tLiIIR+9z9aQxfSDjuNnI6/n6UNOpCyn87Zrc7IC3Tp3oHRj+bY68of2b+pvV5IkSWo2hmCplSucU7JD2L150lw652RtO1atrtHdunTdvJFz336R/OIiTlnyBllE5vQdzA/P+iKPHnYan3TtSW5ONpcd15+iBau2C9+GXkmSJLVlhmCpFalrxHf81IU7hN2y8oodjjWkQ8VWTls8hzHFRZz9zsvkbt3Mkp778vuTr6YwbyTLeu23bZS3v4FXkiRJ7ZQhWEqDVKc313ydqkCNEeEYOW7lO1xSXMT582bQa+NaVufuweSjz2b95Vfxj9iX5Ws30a9nLuMNvZIkScoAhmCpmdQVdPOH9m/U9Oay8gqyQ6Ai7jjRuWduDpu3Vm73nuopzG/PfIPhLz3B5fOnMeCTEio6dmLa4OHcfegI3jnmFL5+wRFcM7Q/X2zeH4EkSZLU6hiCpWZQX9AFGj29uSJGcnOydwi7t16ct+1+y0vLODxnC3dsnc/Rv/gRvPhisoXRyJEw9kdkX3YZZ/bowZnN8L1KkiRJbYkhWGoG9QXd6sDaGP1rrA3eoUFVWRn5734CBQXw2GOwdSsccQT8/Ofwmc/A/vs35bclSZIktXmGYKkZ1Bd0q0NsSR3n65veXB14t63XrayE6dPh8z+EBx6AdeugXz/4+tdh7Fg46qhm+Z4kSZKk9sAQLDWD+oJu9Shu7YZXdU1v3mFLorlzkxHfiRNh2TLo3h0uuywJviNHQnZ2S3xrkiRJUptmCJZ2Q33Nr+oLujVDbX1hd7sOzSUl8MtfJuH3jTegQwc499zk2EUXQZcuLfr9SpIkSW2dIVgZq74Am+o1O2t+lUrQrXc7onXrYNKkJPg++yzECMOHw3//N1x5JfTu3Rw/DkmSJCkjhFjH1iuZYNiwYXHWrFnpLkNpUjvAQjJSe8elR9Ybcmtfc8rPnq1zynP/nrnM/M4ZjSuovBymTk2C70MPwaZNMGhQMtX52mvhkEN27RuVJEmSMlAIYXaMcVhd5xwJVkbaWffmmqO4O7tmZ82vUhIjvPJKEnzvuQc+/hj23hs+//kk/J54YrLNkSRJkqQmYwhWRkolwDZ0zc6aX+3Uu+/ChAlJ+H33XejcGS65JAm+o0dDTk6K34UkSZKkxspKdwFSOtQXVGseb+iacaMHk5uzfUfm6uZXO/j4Y/jDH+Ckk5KpzbfdBgMGwN/+BitWJCPBF15oAJYkSZKamSFYGSmVANvQNflD+3PHpUfSv2cugWQtcM01xZSVwX33wcUXQ9++8JWvwMaN8ItfwNKl8Mwz8LnPQY8ezfq9SpIkSfonp0Or3Uml63ND3Zsbc812966oSDo6FxTAAw/A+vXQvz984xtJg6ujjmrG71ySJElSQ+wOrXYlla7PzeLNN5PgO3Fisrdv9+5w+eXJOt/TT4fs7IbvIUmSJKlJ2B1aGSOVrs9NZtkyuPvuJPy++SZ06ADnnQe//jVcdBHkNtAgS5IkSVKLMwSrXdntbYsasm4dPPhgEnyLipJtjk46KWl6deWV0KtX0zxHkiRJUrMwBKtd2eVti3amvByeeCIJvlOmwKZNcPDBcMstyTrfgw/ejYolSZIktSRDsNqVcaMH17kmuM5ti3YmRnj55ST43nMPfPJJMsr7hS8k63xPOAFCaOLqJUmSJDU3Q7DalVQ6Ou/UO+/AhAlJ+H3vPejcGfLzk+B7zjnu4ytJkiS1cYZgtXqpbHlU0w7bFjVk1Sq4994k+L78cjLCe8YZ8P3vw6WXwh57NMF3IUmSJKk1MASrVau95VFJaRk3T5oLsHvdnjduhIcfToLvE0/A1q1w9NEwfjx85jPJ3r6SJEmS2h1DsFq1Jt3yqKICpk1Lgu+DD8L69bDffvCf/5k0uDryyKYrXJIkSVKrZAhWq9YkWx698UYSfCdOhOXLk+nNV1yRrPM9/XTIymqiaiVJkiS1doZgtWq7vOXRsmVJ6C0ogLlzoUMHOP/8JPheeCHk7saWSZIkSZLaLIfA1KqNGz2Y3Jzs7Y7Vu+XR2rXwt78lTa0GDIBvfxu6dYM//hE+/BAeeigZATYAS5IkSRnLkWC1ag1uebRlS9LYqqAApkyBzZvhkEPg1luTdb6DBqWveEmSJEmtjiFYrd4OWx7FCC++mATfe++FTz6B3r3hxhuT6c7HH59scyRJkiRJtRiC1Xa8/TZMmJCE30WLkmnN+flJ8D37bMjJSXeFkiRJklo5Q7BaTOGckvqnNddn1Sq4554k+L7ySjLCe+aZ8MMfwqWXQvfuLVO8JEmSpHbBEKwWUTinhJsnzd22529JaRk3T5oLsGMQ3rgxWd9bUJCs962ogGOOgV/+Eq6+Gvo3cn9gSZIkSapiCFaLGD914bYAXK2svILxUxcmIbiiAoqKkuD74IOwYQPsvz+MG5c0uDriiDRVLkmSJKk9MQSrRSyvY69fYqTH28XwzceSPX0//BD22AOuuipZ5ztiBGS5i5ckSZKkpmMIVovo1zOXkqog3HfdKi6ZN5384iIO+3hJ0tDq/POT4HvhhdC5c5qrlSRJktReGYLVIr578r68+Iu/csHcZzhx6VtkEXltvyG8/t07OOYbN8Dee6e7REmSJEkZwBCs5rNlCzz+OBQUcMHDD3PB5s0s7bUfvz31Gl486Vyu/cyohrtDS5IkSVITMgSracUIL76YNLi6915YvRp694YvfhHGjmXAsGF8I4R0VylJkiQpQxmClZIG9/hduBAmTEg+Fi2C3FzIz4frroOzzkrW/UqSJElSmhmC1aD69vjtuPpjzi+enoz6vvpq0sn5zDPhlltgzBjo3j3NlUuSJEnS9gzBalDNPX47l2/inHdeJr+4iBE/fQ0qK2HoUPjVr+Dqq6FfvzRXK0mSJEn1MwSrQStWb+DUJW8yZl4Ro99+kW5byli2R2/+csJlfPl/boG8vHSXKEmSJEkpMQSrbjHCG2/AXXfx8l//j17rP2Fdp648fNhpFOaN4pX98+i3Z1e+bACWJEmS1IYYgtuJBhtXpWrpUpg4MVnnW1wMOTlsOfUMvrrXMKYOPI7NHToCkJuTzbjRg5v4u5AkSZKk5mUIbgfqa1wFpBaES0vhgQeS4Dt9enLs1FPhz3+GK66g3157ccacEmY3RciWJEmSpDQKMcZ015AWw4YNi7NmzUp3GU3ilJ89S0lp2Q7H+/fMZeZ3zqj7TVu2wOOPw113wSOPwObNcOihyZZG11wDBx3UzFVLkiRJUvMIIcyOMQ6r65wjwe3A8joCcJ3HY4QXXkhGfO+7D1avhj594KabYOxYOO44CKEFKpYkSZKk9DAEtwP9eubWORLcr2du8sXChUnwnTAB3n8funRJ9vEdOxbOOgs6+GsgSZIkKTNkpbsA7b5xoweTm5O93bH9Nq/jT588B8cfD4cdBj/9KRxyCPzjH7BiRRKKzz3XACxJkiQpo5iA2oHqBlW/f/h1jpg1jasXzuDE92aTVVEBxx4Lv/41XH019O2b5kolSZIkKb0MwbugybYjagoVFfDMM+QXFJA/aRJ8+ikMGADf+lYy3XnIkPTUJUmSJEmtkCG4kXZ7O6KmECO8/noypXnixGR6c48eSVfnsWOT7Y2ynOkuSZIkSbUZghtp/NSF2wJwtbLyCsZPXdj8IXjJkiT0FhTAvHmQkwMXXpgE3/PPh86dm/f5kiRJktTGGYIbKeXtiJrKmjXwwANJ8J0xIzl22mnwl7/A5ZfDXns1z3MlSZIkqR0yBDdSg9sRNYXNm+Gxx5Lg+8gjsGULDB4Mt9+eTHk+8MCme5YkSZIkZRBDcCONGz14uzXBALk52YwbPXj3blxZCS+8kATf++5LRoD32Qe+9KVkuvOxx0IIu1m9JEmSJGW2VhuCQwg3Ap8BhgI9gANjjItrXbMn8F/AxVWHpgD/HmMsba66qtf9Nll36AULkuA7YQIsXgxdusCllybB98wz3cdXkiRJkppQa05YXYAngYeA39RzzURgAHBu1ev/Ae4CLmrOwvKH9t+9JlgrV8I998Bdd8Hs2Ukn57PPhh//GPLzoVu3JqtVkiRJkvRPrTYExxh/CxBCGFbX+RDC4STh99QY44tVx74IPBdCGBxjXNhStabk00+hsDAZ9X3qqWR/3+OOg9/8Bq6+GvbdN90VSpIkSVK712pDcApOAjYAL9Q4NhP4FDgZSH8I3roVnnkmCb6TJydB+IAD4DvfgWuvhcMPT3eFkiRJkpRR2nII3hdYFWOM1QdijDGE8FHVufSIEebMSaY63313MvW5Z88k9I4dC6eckkx/liRJkiS1uBYNwSGE24HvNXDZqBjjtGZ6/o3AjQADBgxo2psvXgwTJyajvvPnQ8eOcOGFSfA9/3zo1KlpnydJkiRJarSWHgn+LVDQwDVLU7zXCqB3CCFUjwaHEALQp+rcDmKMdwJ3AgwbNizWdU2jrFkD99+fBN/nnkuOnXYa3HknXH457Lnnbj9CkiRJktR0WjQExxg/Bj5uotu9CHQjWRtcvS74JKAr268TbnqrV8MNN8Ajj8CWLXDYYfCTn8A118DAgc36aEmSJEnSrmu1a4JDCPuSrO09tOrQkBBCT2BpjHF1jHF+COEJ4C9V05wB/gI80uydoXv2hGXL4MtfTqY7Dx0KITTrIyVJkiRJu6/VhmDgJuCWGq8frfr8OeDvVV9fA/wemFr1egrwlWavLCsLXn652R8jSZIkSWparTYExxhvBW5t4Jo1wNiWqEeSJEmS1Pa5V48kSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpY4QYY7prSIsQwipgSbrrUNr1Aj5OdxHKOP7eKR38vVM6+HundPD3TgAHxBh713UiY0OwBBBCmBVjHJbuOpRZ/L1TOvh7p3Tw907p4O+dGuJ0aEmSJElSxjAES5IkSZIyhiFYme7OdBegjOTvndLB3zulg793Sgd/77RTrgmWJEmSJGUMR4IlSZIkSRnDECxJkiRJyhiGYGW8EMJeIYTfhxAWhBDKQggfhBD+FELYO921qX0LIdwYQigKIZSGEGIIYWC6a1L7E0L4Ugjh/RDCphDC7BDCaemuSe1bCGFECGFKCKGk6v/brk93TWrfQgg3hxBeDSGsCyGsCiE8HEI4It11qfUyBEvQD+gPfAs4EhgLjADuTmdRyghdgCeBW9Nch9qpEMJVwO+AnwJDgReAx0MIA9JamNq7bsBbwNeAsjTXoswwEvgjcDJwBrAVeDqEsFc6i1LrZWMsqQ4hhPOBR4CeMcZ16a5H7VsIYRjwKnBgjHFxmstROxJCeBl4M8Z4Q41j7wAPxBhvTl9lyhQhhA3AV2KMf093LcocIYRuwFogP8b4cLrrUevjSLBUtz2AzcDGdBciSbsihNAROI5ktkFNT5KMlkhSe9WdJOesSXchap0MwVItIYSewI+Bv8YYt6a5HEnaVb2AbGBlreMrgX1bvhxJajG/A14HXkxzHWqlDMFqt0IIt1c15NjZx8ha7+kGPAyUkKwRlhplV37vJElS0wgh/Bo4FbgsxliR7nrUOnVIdwFSM/otUNDANUurv6gKwI9VvbwwxripmepS+/ZbGvF7JzWjj4EKYJ9ax/cBVrR8OZLUvEIIvwGuBkbFGBelux61XoZgtVsxxo9J/hHYoBBCd+BxIADnxhg3NGdtar8a83snNacY45YQwmzgbOD+GqfOBh5MT1WS1DxCCL8DriIJwAvSXY9aN0OwMl5VAH6SpBlWPtA1hNC16vTqGOOWdNWm9i2EsC/J2sxDqw4NqVqTvjTGuDpthak9+TVwVwjhFWAmcBPJtnB/TmtVateqZlYdXPUyCxgQQjiG5O9UZ8KoyYUQ/gBcR/LvuDVVf78CbHBgQ3VxiyRlvKr1mUX1nB4VY5zWYsUoo4QQbgVuqePU59xORE0lhPAlkh4HfUn2bv16jHFGeqtSe7aTv1f/L8Z4fYsWo4wQQqgv0NwWY7y1JWtR22AIliRJkiRlDLtDS5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJUrsWQhgYQoghhGHprqUxQgjXhxA2NOH92uTPoT4hhL+HEB6p77UkSfUxBEuS2qyqULezj7+nu8ZUVNV6ea3D9wIHpaGW/iGEO0MIy0IIW0IIJSGEv4YQ9mvpWqrqGVn18+lV69TXgLHpqEmS1LZ1SHcBkiTthr41vr4Q+GutY2XAni1aUQ0hhJwYY/muvDfGWEZSf4sJIRwIvAC8D/wL8A4wCPgJ8GoI4aQY4+KWrKk+Mca16a5BktQ2ORIsSWqzYowrqj+A0trHagWlA0IIT4UQNoYQ5oUQzq55rxDCkBDCoyGE9SGEj0IId4cQ9q1xPiuE8IMQwgchhM0hhLkhhEtqnK+ebvyZEMKzIYQy4ItV5z5X9cxNIYS3QwhfDyFkVZ1bXHWL+6vev7jq+A7ToUMI54cQXg4hlIUQPgkhPBxC6Fx1bmwI4dUa9d8fQujfyB/pH4BK4KwY4zMxxqUxxiLgrKrjf6hRy7QQwn/Xqq/2FOVzQwjPhRDWhBBWhxCmhhAOr+NndlldfzYhhIFAUdXlq2qO7jc0/TkkvhVCeK/q5zU3hDC21jU/DCEsqfrzXBFC+Ecjf16SpDbIECxJyhQ/Af4LOBp4FbgnhNANIITQF5gBvAWcQBL6ugEPVYdVkum344BvA0cCk4FJIYRjaj3nDuCPwBCgMIRwA/BT4IfA4cB/Vt3jS1XXH1/1+QaSUezjqUMI4VxgCvAUcBwwCpjOP/8u7wjcUvX9XQj0Au5O8WdDCGEv4FzgDzHGjTXPVb3+I3BeCKExI+tdgd+S/ExHAmuBh0MIHWtdV9+fzQfAZVXX5JH8fL6W4rNvBz4PfJnkz+IO4C8hhAsAQgiXAd8k+XM4hORn9kojvjdJUhvldGhJUqb4TYzxYYAQwneBzwLHAM8D/wa8EWP8dvXFIYTPAquBYSTh6JvAL2OME6su+WEIYUTV8ZojjL+PMT5Q4z4/AL5V49j7IYSfkYSv/44xrgohAJRWjWjX5wfAAzHG79c49mb1FzHGv9U4viiE8G/A/BDCfjHGZTv7wVQ5BAjA/HrOz6s6fwgphsUY44M1X4cQPgesIwnFz9c4VeefTYzx+RDC6qprPooxfpzKc0MIXYFvAOfEGJ+rOvx+COEEklD8KHAA8CHwZNWU9aXArFTuL0lq2xwJliRlijdrfL286nOfqs/HASNCCBuqP0hGIQEGhRD2APoBM2vd83mSUcaatgWpEEJvYH+SEcia9/4ZyVrbxhgKPFPfyRDCsSGEh6qm966vUceARj6nIVtSvTCEMCiEMLFqSvI6YCXJvz1q17SzP5tdMQToDDxR6+f+b/zz535/1TXvhxD+N4RwRQih0248U5LURjgSLEnKFNsaVMUYY9Xoa/V/DM4iGR38Zh3vW0kyAlqfWOv1pzW+rr7/TSQNp5pF1cjnVOBp4DrgI5Lp0M+RTJNOxTsk38sQkqnetQ0BtpI0zYJkjXDtn0tOrdePAMtI1kaXVL1/Xh017ezPZldUv/cikhHeHZ4VY/wghDAYOJNk+vuvgFtCCCfGGD9FktRuORIsSRK8RrLmdEmM8d1aH+tjjOtIRihPqfW+U0lCXZ1ijCur3jeojvu+W+PSciC7gRrnkAS2uhxGEnq/G2OcEWNcQCNHUmOMq4EngC+FELrUPFf1+svA5BrNxlaxfSduSNb0Vr9n76q6fhpjfDrGOB/oTuP/A3z1yHNDP5+a5gGbgQPq+Lkvqb4oxrgpxvhojPHrJGux89jxz1iS1M44EixJUtL1+Abg3hDCz0kC3kHAlcB/xhjXA+OBH4UQ3gFmk6wDPg04toF73wL8PoRQCjxGMlp6LNA/xnhH1TWLgTNDCNOBzTHGNXXc5yckTaXeBSaSjMKeA/yFZLRzM/CVEMIfSBpw/bixPwSSoPsi8HQI4ftsv0VSOfDVGtc+C/w2hHAxsJBktHf/qu8FYA3wMXBDCOEDoD/Jz3BrI2taQjJCfUEI4WGgLMa4YWdviDGuDyH8EvhlSIaVZ5A0OhsOVMYY7wwhXE/y76CXgQ3AVVXf4zuNrE+S1MY4EixJyngxxupR3kqS0dBikmC8ueoDku7F44FfkHSRHgNcFmN8o4F7/w/wryTTlN8gmaJ8I/+cVgxJx+hRJOuQ59Rzn8eqnnle1TXTq95TGWNcRbKvbz7JKOgtJI2hGiXG+D5JI7Bi4C6SQFtE8nM5plbjrr/V+JgJrKfGNOoYYyVJsDyK5Of1B5LmXptphBhjSdX38xOSqen/vfN3bPMD4FaSKe7FJF21L+OfP/dSku7Rz1XVdxlwadXPQJLUjoUYay9lkiRJSoQQvkKyXvaKGOOUdNcjSdLuMgRLkqSdCiFcSTIt+rcxxrJ01yNJ0u4wBEuSJEmSMoZrgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjPH/Abt+syY60BWiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8EAAAHoCAYAAABpdO3XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABbLElEQVR4nO3deXxX1Z3/8ddJCBAWQQUUUERRUeKGouKG4Ia7wb2KHTut1mk77bRT2tpNbW1tS9fpdLMz/XVqwB0irrgFUFxBVAyLCwISBFEIiwQIyfn9cRMaQkK+gSTfJN/X8/HII/nee7/3fhLSwttzzueEGCOSJEmSJGWCrHQXIEmSJElSSzEES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpY3RIdwHp0qtXrzhw4MB0lyFJkiRJamKzZ8/+OMbYu65zGRuCBw4cyKxZs9JdhiRJkiSpiYUQltR3zunQkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyRod0FyBJkiRJUuGcEsZPXcjy0jL69cxl3OjB5A/t3+TPMQRLkiRJktKqcE4JN0+aS1l5BQAlpWXcPGkuQJMHYadDS5IkSZLSavzUhdsCcLWy8grGT13Y5M8yBEuSJEmS0mp5aVmjju8OQ7AkSZIkKa369cxt1PHd0WpDcAhhRAhhSgihJIQQQwjX1zr/96rjNT9eSlO5kiRJkqRdNG70YHJzsrc7lpuTzbjRg5v8Wa25MVY34C3gH1UfdXkauK7G6y3NXZQkSZIkqWlVN7/K6O7QMcbHgMcgGfWt57LNMcYVLVaUJEmSJKlZ5A/t3yyht7ZWOx06RaeGED4KIbwdQvhrCKFPuguSJEmSJLVebTkEPwF8FjgT+E/gBODZEEKn+t4QQrgxhDArhDBr1apVLVSmJEmSJKm1aLXToRsSY7ynxsu5IYTZwBLgAmBSPe+5E7gTYNiwYbHZi5QkSZIktSpteSR4OzHG5cAy4JB01yJJkiRJap3aTQgOIfQC+gMfprsWSZIkSVLr1GqnQ4cQugEHV73MAgaEEI4BVld93Ao8SBJ6BwJ3AB8Bk1u4VEmSJElSG9GaR4KHAXOqPnKB26q+/hFQARwJPAS8DfwfsBA4Kca4Pi3VSpIkSZJavVY7EhxjnAaEnVwyuoVKkSRJkiS1E615JFiSJEmSpCZlCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJkiRJUsYwBEuSJEmSMoYhWJIkSZKUMQzBkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxOqS7AEmSJElSyyqcU8L4qQtZXlpGv565jBs9mPyh/dNdVoswBEuSJElSBimcU8LNk+ZSVl4BQElpGTdPmguQEUHY6dCSJEmSlEHGT124LQBXKyuvYPzUhWmqqGUZgiVJkiQpgywvLWvU8fbGECxJkiRJGaRfz9xGHW9vDMGSJEmSlEHGjR5Mbk72dsdyc7IZN3pwmipqWTbGkiRJkqQMUt38yu7QkiRJkqSMkD+0f8aE3tqcDi1JkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJkiRJUsYwBEuSJEmSMoYhWJIkSZKUMQzBkiRJkqSMYQiWJEmSJGUMQ7AkSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRmjQ7oLkCRJkiRtr3BOCeOnLmR5aRn9euYybvRg8of2T3dZ7YIhWJIkSZJakcI5Jdw8aS5l5RUAlJSWcfOkuQAG4SbgdGhJkiRJakXGT124LQBXKyuvYPzUhWmqqH0xBEuSJElSK7K8tKxRx9U4hmBJkiRJakX69cxt1HE1jiFYkiRJklqRcaMHk5uTvd2x3Jxsxo0enKaK2hcbY0mSJElSK1Ld/Mru0M3DECxJkiRJrUz+0P6G3mZiCJYkSZKkJuQev62bIViSJEmSmoh7/LZ+rboxVghhRAhhSgihJIQQQwjX1zofQgi3hhCWhxDKQgjTQgh5aSpXkiRJUoZzj9/Wr1WHYKAb8BbwNaCuTbG+Bfwn8O/A8cBHwFMhhO4tVqEkSZIkVXGP39avVYfgGONjMcbvxhgfACprngshBOA/gJ/FGB+MMb4F/AvQHbimxYuVJEmSlPHc47f1a9UhuAEHAvsCT1YfiDGWATOAk9NVlCRJkqTM5R6/rV9bboy1b9XnlbWOrwTqXHEeQrgRuBFgwIABzVeZJEmSpIzkHr+tX1sOwY0WY7wTuBNg2LBhMc3lSJIkSWqH3OO3dWvL06FXVH3ep9bxfWqckyRJkiS1BR99BL//Pdx4Y7M+pi2PBL9PEnbPBl4FCCF0Bk4DxqWxLkmSJEntQOGcEqc1N7eNG+Ghh6CgAKZOhYoKOOYY+PRT6Nq1WR7ZqkNwCKEbcHDVyyxgQAjhGGB1jHFpCOG3wHdDCAuAt4HvAxuAiWkoV5IkSVI7UTinhJsnzd22529JaRk3T5oLYBDeXRUVUFQEd90FkybBhg2w//4wbhxcey0ccUSzPr5Vh2BgGFBU4/VtVR//B1wP/ALIBf4A7Am8DJwTY1zfsmVKkiRJak/GT124LQBXKyuvYPzUhYbgXREjvPFGMuI7cSJ8+CH06AFXXw1jx8Jpp0FWy6zWbdUhOMY4DQg7OR+BW6s+JEmSJKlJLC8ta9Rx1WPp0iT0FhRAcTHk5MD558N118EFF0Dnzi1eUqsOwZIkSZKUDv165lJSR+Dt1zM3DdW0MaWl8MADSfCdPj05dsop8Kc/wRVXwN57p7W8ttwdWpIkSZKaxbjRg8nNyd7uWG5ONuNGD05TRa3cli1Jg6srroB994UbbkimPP/4x/Dee/D883DTTWkPwOBIsCRJkiTtoHrdr92hdyJGeOGFZMT3vvtg9Wro0ycJu2PHwnHHQah3dWvaGIIlSZIkqQ75Q/sbeuuycGESfCdMgPffh9xcGDMmCb5nnw0dWnfMbN3VSZIkSZLSb+VKuPfeJPy++mrSyfmss+C22yA/H7p3T3eFKTMES5IkSZJ29OmnyTrfggJ48slkf9+hQ+FXv4LPfAb69k13hbvEECxJkiRJSlRUwDPPJMF30qQkCA8YAN/6Flx7LeTlpbvC3WYIliRJkqRMFiO8/noSfCdOhBUroEcPuOaaZJ3vqacm05/bCUOwJEmSJGWiJUuS0FtQAPPmQU4OXHABXHcdnH8+dO6c7gqbhSFYkiRJkjJFaSk88ADcdRfMmJEcO/VU+POfkz1+99orreW1BEOwJEmSJLVnmzfD448nI74PPwxbtsDgwXD77cmU5wMPTHeFLcoQLEmSJEntTWUlvPBCEnzvuw/WrIE+feDf/i2Z7nzssRBCuqtMC0OwJEmSJLUXCxYkwXfCBFi8GLp0gTFjkgZXZ50FHYyA/gQkSZIkqS1buRLuuScJv7NmJZ2czz4bfvxjyM+Hbt3SXWGrYgiWJEmSlBEK55QwfupClpeW0a9nLuNGDyZ/aP90l7VrPv0UCguT4PvUU8n+vscdB7/5DVx9Ney7b7orbLUMwZIkSZLavcI5Jdw8aS5l5RUAlJSWcfOkuQBtJwhv3QrPPpt0dp48OQnCBxwA3/42XHstDBmS7grbBEOwJEmSpDYtlRHe8VMXbgvA1crKKxg/dWHrDsExwpw5yYjv3XfDihXQs2cSeseOhVNOSaY/K2WGYEmSJEltVqojvMtLy+p8f33H027xYpg4MQm/8+dDx45wwQVJ8L3gAujUKd0VtlmGYEmSJEltVqojvP165lJSR+Dt1zO32WtM2Zo18MADyXTn555Ljp12GvzlL3D55bDXXumtr51w3FySJElSm5XqCO+40YPJzcne7lhuTjbjRg9uttpSsnlzsr73ssuSZlY33girVsFPfgLvvw8zZiTHDMBNxpFgSZIkSW1WqiO81aPCraI7dGUlzJyZTHW+7z4oLYV99oEvfQmuuw6GDoUQWr6uDGEIliRJktRmjRs9eLs1wVD/CG/+0P7pbYI1fz5MmJB8LF4MXbrApZcm63zPPBM6GM9agj9lSZIkSW1WqxrhrcuKFXDPPcmo7+zZSSfnc86B22+HSy6Bbt3SXWHGMQRLkiRJatPSPsJb24YNUFiYBN+nnkqmPx93HPzmN3D11cnaX6WNIViSJEmSdtfWrfD000nwnTwZNm6EAw6Am29O9vQ9/PB0V6gqhmBJkiRJ2hUxwmuvJcH37rth5UrYc8+kudXYsXDyycn0Z7UqhmBJkiRJaozFi5PmVgUFsGABdOwIF12UBN/zzoNOndJdoXbCECxJkiRJDVmzBu6/H+66C55/Pjk2YgR84xtw+eXJCLDaBEOwJEmSpFarcE5J+jo/b94Mjz6ajPg++ihs2ZKs7f3pT+Gaa5I1v2pzDMGSJEmS0mZnIbdwTsl2ewCXlJZx86S5AM0XhCsrk5HegoJk5Le0NOnm/OUvJ9Odhw6FEJrn2WoRhmBJkiRJadFQyB0/deG2c9XKyisYP3Vh04fg+fOT4DthAixZAl27wqWXJsH3jDOgg9GpvfBPUpIkSVJaNBRyl5eW1fm++o432ocfwj33JOH3tdcgOxvOOSeZ7nzJJUkQVrtjCJYkSZKUFg2F3H49cymp45p+PXN3/aEbNiT7+BYUJPv6VlbCsGHwu9/BVVfBPvvs+r3VJrhplSRJkqS0qC/MVh8fN3owuTnZ253Lzclm3OjBjXvQ1q3wxBPJ1OZ99oHPfhbefhu++91kGvSrr8JXv2oAzhCOBEuSJElKi3GjB2+3Jhi2D7nV6353qTt0jDB7djLie/fd8NFHyTZGn/1sEoZPPtkGVxnKECxJkiQpLVIJuflD+zeuCdb77yfNrQoKYOFC6NgRLrooCb7nnQedOjX1t6E2xhAsSZIkKW0aHXLrsno13HdfEnxnzkyOnX46fPObcPnl0LPnbtep9sMQLEmSJKnt2bQJHn00Cb6PPgrl5TBkCNxxB1xzDQwYkO4K1UoZgiVJkiS1DZWV8NxzSfC9/35Yuxb69k2aWo0dC0cf7TpfNcgQLEmSJKl1mzcP7rorWev7wQfJ/r2XXZYE3zPOSPb3lVJkCJYkSZLUrArnlDS+w/OHHyZdnQsKYM6cJOiOHg0//zlcfHEShKVdYAiWJEmStNvqC7qFc0q22wappLSMmyfNBdgxCK9fD5MnJ8H3mWeS6c/HHw+/+x1cdZX7+KpJGIIlSZIk7ZadBd3xUxdutw8wQFl5BeOnLkxC8Nat8NRTSfCdPBnKyuDAA+F734Nrr4XBg1v8+1H7ZgiWJEmStFt2FnSXl5bt+IYY6TX/DfjaQ3DPPfDRR7DXXnD99ck635NOssGVmo0hWJIkSdJuqTPoVh3v1zOXkqrz+5euIL+4iPx50xi0ugQ6dYKLLoLrroNzz4WOHVuybGUoQ7AkSZKk3VIz6NY+/t0T+/Dq+L9wwZvPcnzJPABePuAo1n3lPxj69S9Az54tXK0ynSFYkiRJ0m4ZN3rwdmuCO23dwrmLZ/GdT2bT94fPckF5OYv2GcjPTr+eV4afw2evGtFwd2ipmaQUgkMIWQAxxsqq1/sCFwLzY4wzm688SZIkSa1FfR2g84f2h8pKnv7L/Zz28lTOf3sm3Td9Cn37wle/Ctddx0FHHcV3XOerViDVkeBHgSeA34UQugGzgK5AtxDC52OM/2iuAiVJkiSlX30doLu/t5AzZz9F/oQJ5H/wAXTrBlddnjS4GjUq2d9XakVSDcHDgG9VfX0psA44ELgW+CZgCJYkSZLasZodoPus/4SL509nTPE08j5alATdc8+FX/wCLr4YunRJc7VS/VINwd2A0qqvzwEmxxjLQwjPAn9ojsIkSZIktR5rV37CZW+/SH5xEacseYMsIq/3PZRbzvoit034EfTpk+4SpZSkGoKXAqeEEB4GRgNXVB3fC9jYHIVJkiRJSp/COSX8+rFiBr3+Ate8PYNX579AbvlmlvTcl9+ffDWFeSN5f6/+9O+Zy20GYLUhqYbgXwN3ARuAJcCMquMjgLnNUJckSZKkdIiRaQWPsv73f2VS8XR6bVzLms7defDIs3joiFG8uu9gqGpwlZuTzbjRg9NcsNQ4KYXgGONfQgizgf2Bp6q7RAPvAT9oruIkSZIktZD33oMJE6CggJHvvMPm7ByeOvhECvNGMf2gYynPzqFnbg79O3XYoTu01JakvE9wjHEWSVfomscebfKKJEmSJLWMTz6B++6Du+6CF19MRnhHjuRbB5/H44NPYX2nrttdvrasnNdvOSdNxUpNIyvVC0MIXwohFIcQNoYQDqo69u0QwpXNV54kSZKkJlVWBvffD5dcAvvuC1/6EqxfDz//OSxZAs8+y8wRl+wQgAH69cxNQ8FS00opBIcQ/gP4PnAnUHOH6+XAV5q+LEmSJElNprISiorg859Pgu+VV8KsWfAf/wFvvAFz58K3vgX77w/AuNGDyc3Zfn9f1/+qvUh1OvRNwA0xxkdDCLfXOP4akNf0ZUmSJEnabW+9BQUFyVrfZcugWze4/HIYOxZGjoTsbArnlDD+Z8/Wuc53/NSFrv9Vu5NqCD4AeKuO4+WAcyIkSZKk1qKkBO6+Owm/b7wBHTrAuefCL38JF10EXbpsu7RwTgk3T5pLWXlF8tbSMm6elGz+kj+0v6FX7VKqIXgRcCzJ9kg1nQ/Ma9KKJEmSJDXOunUwaVISfJ99FmKEE0+E3/8erroKevcGktA7fupL20Z3N27Zui0AVysrr2D81IUGYLVbqYbgXwL/HULoQrIm+KQQwnXAt4B/ba7iJEmSJNWjvByefDIJvg89lDS8GjQIfvhDuPZaOOSQ7S6va9S3Pst3ck5q61LdJ/j/hRA6AD8FugB3kTTF+mqM8d5mrE+SJElStRjhlVeS4HvPPfDxx7D33iy66Ep+tvcwnuo+kH6duzBuQxeYU7Ldmt66Rn3rYxdotWeN2Sf4r8BfQwi9gKwY40fNV5YkSZKkbd59N2luVVCQfN25M1x8MYwdy0P7HMF3Hl643QjvuPvfgADlFXHbsVTZBVrtXcohuFqM8ePmKESSJElS9brdhZQtX8E1S17mygXTGPD2m1QSeG3QMWTd8iuWn3Eed7zwIctnlpEV5lMR43b3KK+M9dx9Rz1zc+jaqYNdoJUx6g3BIYS5QEr/64kxHtVkFUmSJEkZasqL7zL9l3/j1jefYeSi2eRUVjC/90B+OvJzTDn8dFbs0YucLQGmvr9tlLd2AG6M3Jxsbr04z9CrjLKzkeAHWqwKSZIkKUMVzlrKM3+5n9NefoLzFs7k4i1lfNhtb/532CUU5o1iQZ8Dt7u+MaO8tTnqK+0kBMcYb2vJQnZFCOFW4JZah1fGGPdNQzmSJElS6ubO5e1f/Ynhk+4jf/0nrO+Yy+ODT2Fy3ihe3v8IKrOyd/nWOVlhuzXB4KivVK3Ra4JboYXAyBqvU2t5J0mSJLW0Zcvg7ruTBldvvslBWdkUHXQcPx71BZ4++AQ253Ta5Vtnh0BljNtGeIHtukM76isldrYm+E3g9BjjmobWB6d5TfDWGOOKND5fkiRJqt+6dfDgg0nwLSqCGHlr/8O57+ybePiw01jTpUejblffKO8dlx65Q8g19Eo72tlI8IPA5hpf7/rig+Z1UAhhOUmtLwPfjTEuSnNNkiRJymTl5TB1ahJ8H3oINm2Cgw9m/o1f5z+y81jYfZ+dvr3mqO6ow3pTtGDVdiO64CivtKtC3I1ucukWQjgP6A4sAPoA3wcOA/JijJ/Ucf2NwI0AAwYMOG7JkiUtWK0kSZLatRjh5ZeT4HvPPfDJJ9CrF1x9NdOPP4fvlnShZO2mBm9T36iupNSFEGbHGIfVeS6VEBxCeBa4NMZYWuv4HkBhjPGMpih0d4UQugGLgJ/FGH+9s2uHDRsWZ82a1TKFSZIkqf165x2YMCEJv++9B507wyWXwNixMHo0hW99xM2T5lJWvvPWNQEc1ZWayM5CcKqNsUYCHes43hk4bRfranIxxg0hhGLgkHTXIkmSpHZs1Sq4774k+L70EoQAZ5wB3/8+XHop7LHHtkvHT13YYADu3zOXmd9pFeNKUru30xAcQji2xsujQgira7zOBkYDJc1R2K4IIXQmmQ5dlO5aJEmS1M6UlcGUKUnwfeIJ2LoVjj4axo+Hz3yGwo+q1un+9Dl65OYQApRuLG+wsU5uTva2db6Sml9DI8GzSBpiReDJOs6XAf/e1EWlKoTwS+BhYCnJmuAfAF2B/0tXTZIkSWpHKipg2rQk+D74IKxfD/37wze+kUx3PvJIAArnlGw35bm0rDyl2/d3+rPU4hoKwQeSLE9YBJwArKpxbgvwUYwxnfvy7gfcDfQiqe0lYHiM0Y5XkiRJ2nVvvpkE34kToaQkmd58xRVJ8B0xArKzKZxTwvifPcvy0jKyQqCiEQ1nbX4lpc9OQ3CNMJnVArU0Wozx6nTXIEmSpHZi2bIk9BYUwNy5bM3KpuigYTx5xfU8N/hEVpZn0WNGOeG5Z1izsZzAP/cQTTUA2/xKSr9UG2MRQtgPGEEy7Xi7UNxQJ2ZJkiSpVVq7NpnmXFBAnDaNECOz+x1G4dn/xiOHncqaLj2S66pmN9ec5tzYjUZtfiW1DimF4BDCtcDfgK0k045r/m8+AoZgSZIktQ1btsDUqVBQQMVDD5G9eTOL9uxH4SnXUDhkJEv37Nvkj7T5ldR6pDoS/CPgV8AP0rwGWJIkSWq8GJOtjAoK2DzxbjqVruHjLj145IhzmDxkJG/0PTTZ5mg3ZYdAZYzbdYd2+rPUuqQagvcB/scALEmSpDblnXeSNb4FBbBoERWdOvH0oOHcf9ZInh84lK3ZKa8ObJDNrqS2IdX/1T8GnEjSJVqSJElqvVatgnvvTYLvyy9DCHx0wqnceezl3LPfMDZ06tJkj6pujuVWR1LbkWoIfgr4eQghD5jLttYAiRjjpKYuTJIkSUrZxo0wZUoSfJ94AioqKB2cx13nf5GCgSfxUfdejW5kVR1we9aY2uw0Z6ntSzUE/6Xq83frOBeB7KYpR5IkSUpRRQUUFSXB98EHYcMG2G8/+OY3eea4s/nKm+WUlTduNZ8ju1L7l1IIjjG2yn2CJUmSlGFihDffTILvxImwfDnssQdcdRWMHUth90GMf+odSmaXpXxLg6+UWZquE4AkSZLUXD74IAm9BQXw1luQkwPnnw9jx8KFF1I4/xNunVJMadmbjbqtwVfKPCmH4BDCnsB5wACgY81zMcYfNXFdkiRJynSlpck054ICmD49GQU++WT44x/hyith770BKJxTws2T5jZq6rOdnKXMlVIIDiEMBx4FNgO9gRKgb9XrxST7CEuSJEm7Z8uWpLHVXXfBww/D5s1w6KFw221wzTUwaNC2SwvnlDB+6kJKSlOb+uy0Z0mQ+kjweGAC8DVgHXAG8ClwN/C/zVOaJEmSMkKM8OKLyYjvvffC6tXQuzd88YvJdOdhwyCE7d7S2NFfg6+kaqmG4KOAz8cYYwihAugUY1wUQvg2MJEkIEuSJEmpe/vtJPhOmACLFkFuLuTnJ8H37LOTdb91KJxTwn/e9wYVseFNj5z2LKm2VEPwlhpfrwQOAOYDG4B+TV2UJEmS2qmPPkpGewsK4JVXICsLzjwTbrkFxoyB7t23u7zmlOfsEKiIcdu05obs2SWHWy7KMwBL2k6qIfg14HjgbWAacHsIYR9gLNC4FnySJEnKLBs3wkMPJcF36tRkf99jjoFf/QquvprClTEJuj+ZsS3o1hV4q0d+GwrATn2WtDOphuDvAdX/We77wD+A35OE4s81Q12SJElqyyoq4Nlnk+A7aRJs2AD77w/jxsG118IRRwA7ru2tDrqpBt6anPosKRUpheAY46waX68i2SpJkiRJ+qcY4Y03kuA7cSJ8+CH06AFXX52s8z3tNArf+JDxjyykpODRbaO9TSE7BAOwpJSkvE+wJEmSVKelS5PQW1AAxcVJQ6sLLkiC7wUXQOfOFM4p4dYfP01pWfm2tzVVAHYEWFJjpLpP8Fx2MhslxnhUk1UkSZKk1q+0FB54IAm+06cnx045Bf70J7jySthrLyCZ7nzrlOLtwm9TcM9fSbsq1ZHgB2q9zgGOAU4B/tCUBUmSJKmV2rIFHn88Cb4PPwybN8Ohh8KPfwzXXAMHHQRUdXS+81lKSstS7uS8M9X3qJ4+bfCVtDtSXRN8W13HQwjjSLZLkiRJUnsUI7zwQhJ877sPVq+GPn3gppuYdvw5fG9pJ0rWbiL7rwuoiPN3CL2NDcC1u0MbeCU1td1dEzwJmAV8pQlqkSRJUmuxcGESfCdMgPffh9zcZB/fsWN5qNcQbnlsIaVzy4FNwK51c67Jdb2SWsruhuARwMamKESSJElptnIl3Hsv3HUXzJoFWVlw1llw222Qn0/hu+uq1ve+1SSPywpQGV3XK6llpdoYa0rtQ0BfYChQ51RpSZIktQGffgoPPZSM+j75ZLK/79Ch8OtfJ1sb9e0L7Lif7+7Ys0sOt1yUZ+iVlBapjgR/Uut1JVAMfDfG+GTTliRJkqRmVVEBzzyTBN9Jk5IgPGAAfOtbcO21kJcHVDW4+r+kwdXusJOzpNYk1cZYn2vuQiRJktSMYoTXX0+C78SJsGIF9OiRdHUeOxZOPTWZ/kzTbmvkqK+k1iblNcEhhCOBwcAW4O0Y44Jmq0qSJElNY8mSJPQWFMC8eZCTw/JTz+C/z7yJB/c9iq05nah4bD3Zjz9BRYy7vKVR9fpeuzpLau0aDMEhhOOA/wfkkcxmAYghhFeBf4kxLqy6bs8Y45pmq1SSJEmpWbMGHnggCb4zZgDw8TEn8Lf8/2DCgBNZm9v9n9dWdXXe1e7OjvRKamt2GoJDCIOBIuAd4DpgXtWpPOA/gRdCCEcAlwC9gNubr1RJkiTVa/NmePzxJPg+/DBs2cKS3vtz32nXMWXI6XzQc98mfVx2CPzqyqMNv5LanIZGgm8FpgGXxBhr/ofB10MIE4GHgGeAA4GLmqNASZIk1aOyEl54AQoK2HL3PXRct5ZVXXsy5ajzmJw3irf2GQQhNHyfRnJPX0ltWUMh+AzgoloBGIAYYwwh/BR4ARgTY3y6OQqUJElSLQsWJCO+EybA4sVs6dSZxwYNZ3LeKJ4feAwVWdlN/kj39JXUXjQUgnsCy3dyfhmwNcb4UJNVJEmSpG0K55QwfupCNpcs55L5z3FxcRFHr3iHipDF8wOPYfKFl/HkIcPZ2DG3WZ7vml9J7U1DIXgZcFTV57ocA3zQlAVJkiQpCb8/e2A2J745g58UT+PUxXPoECt5c9+D+dEZN/Dw4SNY1W3PJntedVdnuztLau8aCsGTgfEhhNkxxpU1T4QQ9gV+BkxqruIkSZIySeGcEn792DwGvvEi+fOm8czbL9K1fBPL9ujDn4dfTuGQkbzba8BuP8epzZIyWUMh+MfABcC7IYQCoHpv4CHANSSjwHaEliRJ2kWFc0oY/8QCei58izHFRTwwfwZ9Pl3D2k5deWjISCbnjWTWfkOIIWuXn2HolaR/2mkIjjGuDSGcBPwUuAqonnOzBvgH8L0Y49rmLVGSJKl9qF7fW1JaRgD6r13JxfOm8/fiIg755AM2Z3fg2UEnUJg3kqKDjmdLh5zdep6hV5J21NBIMDHGUuBLIYQvA72rDq+qq2O0JEmSdlQ4p4RbpxRTWlbOHps28JkFz5NfXMSJy4oBeHm/PG4e/RUeG3wKa3O779azbGQlSTvXYAiuVhV6P2rGWiRJktqdwjkl/PC+2Zy08GXyi6dxxnuv0KliK+/utR+/GPFZpgw5nWU99knpXtXTmgMQax1z1FeSUpNyCJYkSVIjVFbCzJnwzZ/z3BvT6LH5U1Z17UnB0AuYlDeK4n0GQQgp3SoA1w4fwO35RzZvzZKUAQzBkiRJTWn+fCgogAkTYMkSzsnpxBOHnkzhkJHMHHgMFVnZjbqdI7yS1LQMwZIkSbtrxQq4554k/M6eTczKYuZBx3L/hZfz1CHD2dgxN6XbOLVZkpqfIViSJGlXbNgAhYVJ8H3qKaisZM2Qo/nruTdx/6BTWNVtzwZvUc1mVpLUclIOwSGE84AvAwcBo2OMH4QQvgC8H2N8prkKlCRJajW2boWnn+aD/7qTXk8/Tm75Jpbt0YfJJ15B4ZCRvNdr/5RvtfhnFzRjoZKk+qQUgkMI1wJ/Bv4HOBOo3rQuG/gWYAiWJEntU4zw2mvJiO/dd8PKlXTv3I1JeSOZnDeK2f0PJ4asRt2yf8/UpkdLkppeqiPB3wJuiDHeUzX6W+0l4EdNX5YkSVKaLV6cNLcqKIAFC6jI6cizB5/A/Sd/gWkHDWNLh5wGb1GX3Jxsxo0e3LS1SpJSlmoIPgR4sY7jG4A9mq4cSZKkNFq9Gu6/Pwm+zz+fHBsxgsJRV3JLxyGs7dxtt27v2l9JSr9UQ/By4FBgSa3jI4D3mrQiSZKklrR5Mzz6aBJ8H30UtmyBww+Hn/6UqUedwbdnraW0rHy3HmH4laTWI9UQfCfwXzWmQu8fQjgN+AVwa3MUJkmS1GwqK5OR3oKCZOS3tBT23Zd3r7ye73U9mpd7DIC1AZ77eJcfEYBrhw/g9vwjm6xsSdLuSykExxh/EULoATwFdAaKgM3AL2OMf2jG+iRJkprOvHlJ8J0wAZYuha5dWTryXO7Y8zie7JtHRVb2bt3efX4lqfVLeYukGOP3Qgg/AYYAWcC8GOOGZqtMkiSpKXz4IdxzTxJ+X3sNsrNZMXwEvxv2GQoPOJ6yjp13+dZOc5aktiflEAwQY9wIzGqmWiRJkprGhg0weXISfJ9+Opn+PGwYb467jf+Ig1mUvXsNrpzqLEltV70hOIQwJdWbxBgvbppyJEmSdtHWrfDUU0nwLSyEjRth4ED47nfh2mv5/oJyJry0lLibj3H0V5Latp2NBH/SYlVIkiTtihhh9uwk+N59N3z0Eey5J3z2s8w4YTRfXZJL6aat8Pfd38zC0V9Jah/qDcExxs+1ZCGSJEkpe//9pLlVQQEsXAidOsFFF/HSyefx76v7sKo8wEKArbv1GBtdSVL706g1wSGEXGBQ1cv3YoxlTV+SJElSHVavhvvuS4LvzJkAvLT/ERSe++88NvgU1nXuBit3/zFOd5ak9i2lEBxC6AT8HPgi0JFkRtDmEMKdwLdjjJuar0RJkpSxNm2CRx9Ngu+jj0J5Oe/2GsCDp/8LDw05neV79GmSxxh8JSlzpDoS/CfgHOALwItVx04C7gC6A//a9KVJkqSMVFkJzz0HBQWU33MfORvWsbLbXjx0zIUU5o1iXp8DIYQmedRY1/hKUsZJNQRfAVwaY3yqxrFFIYSPgAcxBEuSpN01bx7cdRcb//4PuqxYzqc5nXli8MlMHjKKFw44isqs7CZ7lE2uJClzpRqCPwVK6jheArguWJIk7ZoPP0y6OhcUwJw5bA1ZvHTgsRRedC1PHXwiZR07N9mjbHIlSYLUQ/DvgVtCCNdXN8OqapL1g6pzkiRJqVm/HiZPToLvM89AZSVr8o7mD6NvYvIhp/JJ155N9qiuHbP5yZgjDbySpG1SDcHDgdOBkhDCm1XHjqx6f9cQwpTqC2OMFzdtiZIkqc3buhWefDIJvoWFUFYGBx4I3/seTw89ixteWU+Mu/8YR3slSQ1JNQR/TLL2t6b3m7gWSZLUnsQIs2Ylwffuu2HVKthrLxZdeAW3dT+G6b0OgS0BXl6/y4+wq7MkqbFSCsExxs81dyGSJKmdWLQIJkxg/f/+ne5LFrE5O4dnDj6BSafdxPSDjqU8O2e3bm/wlSTtjlRHgiVJkur3ySdw333JqO8LLwDw1oAjmXzuV3li8Mms69xtl29t6JUkNaWUQnAIYU/gVmAU0AfIqnk+xtg0O9VLkqS2Y9MmeOSRJPg+9hiUl7Non4Hcd/r1TBkyguV77N4/D3rm5vD6Lec0UbGSJCVSHQn+B5AH/B+wEmiC1hWSJKnNqayEGTOS4PvAA7B2LWW992HicRfzwOGnM7/3gRDCbj8mJztw68V5TVCwJEnbSzUEjwROjzG+1oy17LIQwpeAcUBfoBj4jxjjc+mtSpKkdqS4GO66CyZOhA8+gG7d4LLL+H8HnsKPP92HyqzsJnuU058lSc0p1RD8HrWmQLcWIYSrgN8BXwKer/r8eAhhSIxxaVqLkySpLVu+POnqXFAAr78O2dmsOGkkvzlhLA8dcBybcjpDGU3yLwSDrySppaQagr8G3BFC+CbwVoyxohlraqxvAH+PMf616vW/hxDOBf4NuDl9ZUmS1AatXw+TJiXB95lnIEbm9h/M/Wd9kUcPO41PuvZskscYeiVJ6ZJqCH4XyAVeAwi11vrEGJtuDlQjhBA6AscBv6x16kng5JavSJKkNqi8HJ56Kpnu/NBDUFbGp/sdQMGIa7jn0BG8v9fuBdUAXDt8ALfnH9k09UqStBtSDcF3Az2Ar9K6GmP1ArJJaqppJXBW7YtDCDcCNwIMGDCg2YuTJKnVihFefZX3fvNn9pwyib02rmV17h48ctgZFOaN5LV+hzVJg6v+PXMZN3qwI76SpFYj1RA8DDghxvhWcxbT3GKMdwJ3AgwbNqy1BHlJklrMk1Nm8u5v/sK5bzzDQWuWs192Dk8dfCKTjxjFjAOPpTw7Z7ef0bVjNj8Zc6TBV5LUKqUagucBezRnIbvoY6AC2KfW8X2AFS1fjiRJrc+jRW8x/7d/ZdSsJzln+QLOIvDSgCP50/DLeWLwKazv1LVJnuM6X0lSW5BqCP4+8OsQwveBuUB5zZMxxtVNXVgqYoxbQgizgbOB+2ucOht4MB01SZKUToVzSrh1SjFl6zZw5nuvMqa4iHMWzeKCygoW9DqAO0Zez5TDT+fDPXo32TMNv5KktiTVEPxY1ecn2X49cKh6nZbGWFV+DdwVQngFmAncBPQD/pzGmiRJanGFsz/ggV8XcPPcIs5bOJM9tmxkRbe9+NuwS5icN4oFfQ5skucYeiVJbVmqIXhUs1axG2KM94YQ9iYZre4LvAWcH2Nckt7KJElqXtWjvvssfYcxxUVcPG86+es/Zn3HXJ449BQm543kpQFHUpm1+/+teqzdnSVJ7URKITjGOL25C9kdMcY/An9Mdx2SJDWX6sBbWpasSNpn/cdcPG8GE+cVMeSj9ynPymb6gcfy01H/ytMHn8CmnM5N8lxHfSVJ7U2qI8EAhBD6AQOAjjWPxxhnNGVRkiRpx+DbbfNGLn/7BfKLizh5yZtkEXmt32B+cPZNPHrYaazu0mOXnmPQlSRlkpRCcFX4nQiMIFkDXL0WuFo61wRLktQu1A69AB0qtjJq8RwufetZzn73ZTpv3cLinn35r1OupnDISBbvtWvB1f17JUmZKtWR4N+SbEU0BHgVOJdkG6IfAV9vlsokScoAhXNKGD91ISWlZf88GCPHfPg2+cVFXDR/BnuXrWN17h7ce9TZFA4ZxZx+gyGERj/LEV9JklIPwacDF8QYF4QQIrAqxjgzhLAZ+DHwVLNVKElSO/X9wrlMeGnptqlVB6xZTn7xNPLnFXHgmg/Z1KEjTx98IpPyRvHcgUMpz85p1P1zc7K549IjDb2SJNWQagjOBT6u+no10Ad4G5gHHNUMdUmS1K59v3AuBS8tZc+Na7lgwfNcWvwsxy5fSCWBFw84kj8Ov5InBp/M+k5dG3XfrACV0enOkiTVJ9UQvAA4DFgMvA7cFEL4APgyUNIslUmS1E7UXuvbqXwzZ737Cn+dV8TIRbPJqaxgfu+B/HTk55hy+Oms2KNXSvc18EqS1HiphuDfAftWff0j4AngM8Bm4F+aoS5Jktq02sE3q7KCkz54izHFRZy3cCbdt5TxYbe9+d/j8ykcMpIFfQ5s8J5dO2bzkzFOb5YkaXekuk/whBpfvxZCGEgyMrw0xvhxvW+UJCmD1NXkavCqxYx561kumTedvhs+YX3HXB4ffAqT80bx8v5HUJlV/wYL1VsxONIrSVLTadQ+wTVsAd6OMW5oymIkSWpr6gq++677mIvnT2dMcRGHr1pMeVY20w46jtuHfIGnDz6BzTmddnpPQ68kSc1npyE4hHAmsHeM8b4ax74D3Ap0CCE8DVwdYyxtziIlSWqNanZ37rZ5I+ctnEn+vCJOWjKXLCKv9RvMD86+iUcOO401XXrs9F4BuHb4AG7PP7JFapckKVM1NBL8HeDx6hchhBOAnwL/C8wHxgHfq/osSVLG+H7hXO6ZuYhR77/GmOIizn73ZTpv3cL7e/bld6d8hsK8kSzZs19K93L/XkmSWk5DIfhIkiBc7QrghRjjDQBVHaJvxxAsSWrntjW62riFocsXkj+viFfmP8deZev4JHcP7jnqHArzRvF630MhhJTuafiVJKnlNRSCewIf1Xh9CvBYjdevAv7NLUlqN2qu8a1uTAUwcHUJ18+bRn7xNAaWfsimDh158pDhTM4bxXMDh7I1e+d/pdrZWZKk1qGhEPwhMAj4IITQCRgK/KDG+e4k2yRJktSmFc4p4eZJb1JWXrnt2J4b13Lh/BmMKZ7G0A8XUknghQOO4r9PvoonDj2ZDZ26NHhfm1xJktS6NBSCHwd+UdUM62LgU+C5GuePAt5tptokSWpWtffyBehcvomz3n2F/OIiTn//NXIqK5jX50B+MvJfmTJkBCu792rwvgZfSZJar4ZC8A+BScDTwAbgX2KMW2qc/1fgqWaqTZKkZlE7/GZVVjB86VzGFE/j3Ldn0n1LGR9225v/PT6fyXmjWNh7YIP3tLuzJEltw05DcIzxY2BECKEHsCHGWFHrkitIwrEkSW1CzW2NDvvoffKLi7hk3nT6bviEdR278NjgUynMG8VLA44ghqyU7mmDK0mS2o6GRoIBiDGuref46qYtR5Kkplez2dW+6z7mxvlJg6vDVy2mPCubaQcN48d5N/DMoOPZnNMp5fsafiVJantSCsGSJLUF9XV27r75U85dOJMxxdMYvnQuWURm9zuM75/zJR4dfApruvRI6f6GXkmS2j5DsCSpzaurs3OHinJGvP8aY94q4ux3X6ZTRTmL9uzHb0+9hsIhI1m6Z9+d3tPAK0lS+2QIliS1SXV1diZGjl2+gPziaVy44Dn2KlvHx116MPGYcykcMpI3+h4KIdR7T4OvJEntnyFYktRm1Bl8gYGrSxhTPI38eUUcULqCTR068uQhw5mUN4rnBw5la/bO/7oba1dnSZIyhiFYktSq1Rd899q4lgvnz2BM8TSGfriQSgIzDzia/zr5M0w99CQ2dOrS4L3d1kiSpMxjCJYktTr1Bd/O5Zs4+52XyZ83jdMXzaZDrKS4z0HcPupfefjwEazs3ivlZ/Tvmcu40YOd+ixJUoYxBEuSWoX6gm9WZQUnLZ3LmOIizn37BbptKaOke2/uPPFSCoeM5O3eAxu8d1aAymjwlSRJhmBJUprV1+Dq8FXvM+atIi6ZP519NqxmXccuPHLYaRTmjeTl/Y8ghqx672mDK0mSVB9DsCSpRdS3h29Nfdet4pJ508kvLuKwj5ewJasD0wYNY/KQkTx78Als7tCx3vsbfCVJUioMwZKkZvf9wrlMeGnptuBbMwDvsWkD5y58gTHzijhx6VtkEZnV/3C+f86XeOSwUynN3aPe+xp8JUlSYxmCJUlNrqFR35yKck5f9Bpjip/lrHdfoVNFOe/t1Z/fnHoNhXmj+KDnvvXe2+ArSZJ2hyFYktQkagbfmrYF4Bg5tmQBY+YVceH859hz03o+7tKDicecy+S8Uby57yEQQp33NvhKkqSmYgiWJO222tOdazpwdQn5xUXkz5vGAaUrKOvQiScPGc7kvFE8P/AYtmbX/VeRwVeSJDUHQ7AkqdEamu6896elXLjgOcYUP8sxH75DRchi5gFH87tTPsPUQ07i005d6rxvAK4dPoDb849s7m9BkiRlKEOwJKlRCueUcPOkuZSVVwD/DMCdyzdxzjsvk19cxIj3X6NDrOStfQbx41Gf5+HDR/BR973rvJ97+EqSpJZkCJYk7VTNUd/sEKiI/xz3zaqs4OQlbzJmXhGj336RblvKKOnemztPvJTJQ0bxTu8Ddrif05wlSVI6GYIlSTuor8lVRYwQI0M+ep/84iIumT+dfTasZl2nrjx82GkU5o3ilf3ziCFrh3s60itJkloDQ7AkaZvCOSXcOqWY0rLyHc71W/cRl8ybTn5xEYM/XsqWrA4UDRrG5LxRFA06ns0dOu7wHoOvJElqbQzBkpTh6hv1Bdhj0wbOWziTMcVFDP/gLQBe7T+E753zJR457DTW5nbf4T1Od5YkSa2ZIViSMkxDnZ1zKsoZuWg2Y956ljPfe5VOFeW8t1d/fnnaWB4aMpIPeu5b530d9ZUkSW2BIViSMkjt/Xy3BeAYOa5kPmOKi7hgwfPsuWk9q7r0ZMIx5zE5bxRz9z0YQqjznrk52dxx6ZGGX0mS1CYYgiWpHamrk3P157pGfQ/6ZBn5xUXkz5vGgLUrKevQiamHDqdwyCieO3AoFVnZdT6n+p6O/kqSpLbGECxJ7UTtUd7qrYyqP1cf7/XpGi6c/xxjios4esU7VIQsZh5wNL859VqePGQ4n3bqst193cdXkiS1J4ZgSWoHCueUbBeAa8vdsomz332JMcVFnPb+HDrESubuM4gfn/EFphw+glXd9trhPQG4dvgAbs8/sllrlyRJakmGYElqI3Y21bkuWZUVnLLkDfKLizj37RfpWr6JZXv05i8nXsbkvFG822vAju9x1FeSJLVzhmBJaqV21sW59lTnbWIk76NF5BcXccm86fT5dA3rOnXloSGnU5g3ilf3G0IMWTs8y9ArSZIyhSFYklqJnYXe+qY5V+u/9iMumTeN/OJpHPrJUrZkdeDZg49n8pBRTBs0jM0dOu7wHvfzlSRJmcgQLEmtQOGcEm6eNJey8gqg4dALsMemDZy/4HnGzJvGiR+8BcAr+w3hu6O/zKODT2Vtbncg6eRMjanTjvpKkqRMZgiWpDQrnFPCf973Rr1re2vquLWckYtmkV9cxJnvvUKniq28t9d+jD/tOh4acjrLeu4LJMH3t1cebdCVJEmqxRAsSS1sZ9Oe6xJiJceVzGdMcREXLHienps2sKprTwqGXsDkvFG8tc8gCGHb9bk52dxx6ZEGYEmSpDoYgiWphRTOKeHWKcWUlpVvO7azADzokw/IL55G/rxp7L92JRtzOjH1kJMozBvFCwceQ3nIdqqzJElSIxmCJakZ1LWdUSqjvr0+XcNF82cwpriIo1a8S0XI4vmBx/Dr08Yy9ZDh7NlnL8aNHsz/GXIlSZJ2iSFYkppY7SZX1Wt96wvAuVs2cc47LzKmeBqnLp5Dh1jJm/sezI/OuIFXh5/D5y8/id8YeiVJkpqEIViSmtj4qQu3BeD6ZFdWcMri18mfN43Rb79I1/JNLNujD38efjlPHHUGX/jihfzQ4CtJktTkDMGS1ARqTn+uV4zkrXyPMcVFXDx/Bn0+XcPaTl15aMhIJueNZNZ+Q+jZtZN790qSJDUjQ7Ak7aba059r22/tSi6eN50xxUUc8skHbM7uwLODTqAwbyTTBx3Ppuwc+vfM5Tc2tJIkSWp2hmBJ2onqEd7lpWX0yM0hBFizsXxbs6vqz7XtsWkDFyx4nvziIk5cVgzAy/vlcfPor/DoYafSfd/ejBs9mL8YeiVJklqUIViSqtQOvFu2VrCxvHLb+ZpbG1UH35oBuOPWckYtepX84mmc8d4rdKrYyrt77ccvRnyWKUNOJx4wkHGjB3OHwVeSJCltDMGSMl5d+/fW/HpnQqxk2LJ5jCmexgULnqPH5k9Z1bUndw29gMl5oyjeZxD99+zCzO+c0VzlS5IkqREMwZIyWkPreesz6OMPGDOviPziaey37iM25nTiiUNPpnDISGYOPIaKrGwAcnOyGTd6cHOULkmSpF1gCJaUkVLq5lxL7w1ruGj+DPLnFXHUinepCFk8N3Ao40dcx1OHDGdjx1wAskOAGOnfM5dxNruSJElqVQzBktqlhhpaBWDHdlY76rKljHPeeYkxxUWcuvh1smMlb+x7CLedeQOPHDaCVd323HZtbk42d1x6pKFXkiSpFTMES2o3ao7u1gy5dTW02lkAzq6s4NTFr5NfXMTod16kS/lmlu3Rh7+efAVPDj2L17r23aE7tKO+kiRJbYMhWFK7UHttbyqjvNuJkSNWvselbz3LRfNn0HtjKWtzuzE5bxTPn3guo2+4lJuO25+bmrxySZIktSRDsKQ2bVfW9ta039qVXFI8jTHFRRy8ehlbsnNYNfJs+MoN9DjvPK7t1Ilrm7hmSZIkpY8hWFKbU9+051T1KFvPBQufJ7+4iBOWzQPg1QFHMOdL/87Qb9xA/z33bOAOkiRJaqsMwZLalF2d9txxazmj3nuVMfOKGPXeq3Sq2Mo7e+/PL0Z8lpeGn8tnrx7hel5JkqQMYAiW1KaMn7ow5T19s2Ilw5bN46oF0zl73nPssWkDH3Xdk38ceyEzh59L/vUX8K1j92vmiiVJktSatNkQHEKYBpxe6/C9Mcar01COpGZQ3zZHDTn446V89r3nuHzBDLqsKIGuXeGKS2HsWPqccQY3dOjADS1QvyRJklqfNhuCq/w/4Ls1Xu9aZxxJaVVf2K1vm6O69N6wmovnz+DSedPIW/EuZGfDOefA2F/AJZckQViSJEkZr62H4I0xxhXpLkJS49QOvZ9u2Up5RRJ3a4bdhtb7dtlSxui3X2RMcRGnLHmD7FjJmryj4ebfwVVXwT77NON3IUmSpLaorYfgq0MIVwMrgceB22KM69Nck6Q61NfRuaER3tqyKys47f055M8r4px3XqJL+WY+7bc/2d/7Lowdy56DBzd57ZIkSWo/2nIInggsAZYDecAdwFHAOfW9IYRwI3AjwIABA1qgRClz7Wy0t7FbGhEjR654lzHFRVw0fwa9N5ZS2rkbU489hzG/+jZdTz4ZQmjy70GSJEntT4ix0f8cbTYhhNuB7zVw2agY47Q63nsC8DJwXIzxtYaeNWzYsDhr1qxdqlPSztXexmhX7Ve6gvx50xhTPI1Bq5exOTuHpw8+gcK8Ubw8+AR+dMWxbmskSZKkHYQQZscYh9V1rrWNBP8WKGjgmqX1HJ8FVACHAA2GYEnNpzHbGNXWs2wdFyx4nvziaRxfMg+Al/Y/goJTLufpvNNYFjvRr2cuPxo92AAsSZKkRmtVITjG+DHw8S6+/UggG/iw6SqS1Bg11/02RtfKcs5bOptzXnuaUe/NIqdyK2/vPYA/jf4CB331BkaffwLDgVuap2xJkiRlkFYVglMVQhgEXAs8RhKahwC/AuYAM9NYmpRRdrbutyFZsZLjPyjm2nef47z5z5OzYR307Qtf/xqMHcuhRx/Noa7zlSRJUhNrkyEY2AKcCXwN6AZ8ADxK0h169xYhSkpJ7XW/DXV5zskKdOvcgd5L3uW6957nsoXT6bJiOXTrBpdeCmPHwhlnJPv7SpIkSc2kTYbgGOMHwOnprkPKZI1Z93tU1kZ+svktjnx8Crz+ehJ0R4+Gsb+Eiy+Grl2bt1hJkiSpSpsMwZLSb3kD6367bt7I6Hde5OqFMzhh0RyorITjj4f/+i+46iro06eFKpUkSZL+yRAsaZf065m7QwOsDhVbOXXxHMYUT+Ocd14id+tmPu0/AL73Pbj2Whg8OE3VSpIkSQlDsKSU1W6ElZMdKN9ayVEr3mFMcREXz5/B3hvXsqZzdx4/bjS9bvpXRvzLxWCDK0mSJLUShmBJ9dpZ9+fuH37A9fOmkT9vGgM/WcbmDjl8PGo0fOUG9jz3XC7t2DHN1UuSJEk7MgRLArYPvP165jLqsN48OLtku+7PPcvWceGC58kvLmJYyXwAXjvoaAb+/FY6XX45/Xv0SOe3IEmSJDXIECxlqJ2N8paUljHhpaVEoNPWLZzx7iuMmTeNke/NomPlVhb2GsDPTr+eKUNG8OEefXj/8xek95uRJEmSUmQIltqZ2iO640YnzagaGuWtKcRKTvzgLfKLp3H+gufZY8tGVnTbi/837GIK80Yyv/eB29b59u+Z27LfoCRJkrQbDMFSG9bQFOaS0jLG3f8GBOoc5a3t0FWLGVM8jYvnTaf/+lVs6JjLE4eezOS8Ubw44Egqs7K3uz43J3tbyJYkSZLaAkOw1AbUN7p786S52wXeusJteeWOcbfmkT7rP+Hi+dO5tLiIIR+9z9aQxfSDjuNnI6/n6UNOpCyn87Zrc7IC3Tp3oHRj+bY68of2b+pvV5IkSWo2hmCplSucU7JD2L150lw652RtO1atrtHdunTdvJFz336R/OIiTlnyBllE5vQdzA/P+iKPHnYan3TtSW5ONpcd15+iBau2C9+GXkmSJLVlhmCpFalrxHf81IU7hN2y8oodjjWkQ8VWTls8hzHFRZz9zsvkbt3Mkp778vuTr6YwbyTLeu23bZS3v4FXkiRJ7ZQhWEqDVKc313ydqkCNEeEYOW7lO1xSXMT582bQa+NaVufuweSjz2b95Vfxj9iX5Ws30a9nLuMNvZIkScoAhmCpmdQVdPOH9m/U9Oay8gqyQ6Ai7jjRuWduDpu3Vm73nuopzG/PfIPhLz3B5fOnMeCTEio6dmLa4OHcfegI3jnmFL5+wRFcM7Q/X2zeH4EkSZLU6hiCpWZQX9AFGj29uSJGcnOydwi7t16ct+1+y0vLODxnC3dsnc/Rv/gRvPhisoXRyJEw9kdkX3YZZ/bowZnN8L1KkiRJbYkhWGoG9QXd6sDaGP1rrA3eoUFVWRn5734CBQXw2GOwdSsccQT8/Ofwmc/A/vs35bclSZIktXmGYKkZ1Bd0q0NsSR3n65veXB14t63XrayE6dPh8z+EBx6AdeugXz/4+tdh7Fg46qhm+Z4kSZKk9sAQLDWD+oJu9Shu7YZXdU1v3mFLorlzkxHfiRNh2TLo3h0uuywJviNHQnZ2S3xrkiRJUptmCJZ2Q33Nr+oLujVDbX1hd7sOzSUl8MtfJuH3jTegQwc499zk2EUXQZcuLfr9SpIkSW2dIVgZq74Am+o1O2t+lUrQrXc7onXrYNKkJPg++yzECMOHw3//N1x5JfTu3Rw/DkmSJCkjhFjH1iuZYNiwYXHWrFnpLkNpUjvAQjJSe8elR9Ybcmtfc8rPnq1zynP/nrnM/M4ZjSuovBymTk2C70MPwaZNMGhQMtX52mvhkEN27RuVJEmSMlAIYXaMcVhd5xwJVkbaWffmmqO4O7tmZ82vUhIjvPJKEnzvuQc+/hj23hs+//kk/J54YrLNkSRJkqQmYwhWRkolwDZ0zc6aX+3Uu+/ChAlJ+H33XejcGS65JAm+o0dDTk6K34UkSZKkxspKdwFSOtQXVGseb+iacaMHk5uzfUfm6uZXO/j4Y/jDH+Ckk5KpzbfdBgMGwN/+BitWJCPBF15oAJYkSZKamSFYGSmVANvQNflD+3PHpUfSv2cugWQtcM01xZSVwX33wcUXQ9++8JWvwMaN8ItfwNKl8Mwz8LnPQY8ezfq9SpIkSfonp0Or3Uml63ND3Zsbc812966oSDo6FxTAAw/A+vXQvz984xtJg6ujjmrG71ySJElSQ+wOrXYlla7PzeLNN5PgO3Fisrdv9+5w+eXJOt/TT4fs7IbvIUmSJKlJ2B1aGSOVrs9NZtkyuPvuJPy++SZ06ADnnQe//jVcdBHkNtAgS5IkSVKLMwSrXdntbYsasm4dPPhgEnyLipJtjk46KWl6deWV0KtX0zxHkiRJUrMwBKtd2eVti3amvByeeCIJvlOmwKZNcPDBcMstyTrfgw/ejYolSZIktSRDsNqVcaMH17kmuM5ti3YmRnj55ST43nMPfPJJMsr7hS8k63xPOAFCaOLqJUmSJDU3Q7DalVQ6Ou/UO+/AhAlJ+H3vPejcGfLzk+B7zjnu4ytJkiS1cYZgtXqpbHlU0w7bFjVk1Sq4994k+L78cjLCe8YZ8P3vw6WXwh57NMF3IUmSJKk1MASrVau95VFJaRk3T5oLsHvdnjduhIcfToLvE0/A1q1w9NEwfjx85jPJ3r6SJEmS2h1DsFq1Jt3yqKICpk1Lgu+DD8L69bDffvCf/5k0uDryyKYrXJIkSVKrZAhWq9YkWx698UYSfCdOhOXLk+nNV1yRrPM9/XTIymqiaiVJkiS1doZgtWq7vOXRsmVJ6C0ogLlzoUMHOP/8JPheeCHk7saWSZIkSZLaLIfA1KqNGz2Y3Jzs7Y7Vu+XR2rXwt78lTa0GDIBvfxu6dYM//hE+/BAeeigZATYAS5IkSRnLkWC1ag1uebRlS9LYqqAApkyBzZvhkEPg1luTdb6DBqWveEmSJEmtjiFYrd4OWx7FCC++mATfe++FTz6B3r3hxhuT6c7HH59scyRJkiRJtRiC1Xa8/TZMmJCE30WLkmnN+flJ8D37bMjJSXeFkiRJklo5Q7BaTOGckvqnNddn1Sq4554k+L7ySjLCe+aZ8MMfwqWXQvfuLVO8JEmSpHbBEKwWUTinhJsnzd22529JaRk3T5oLsGMQ3rgxWd9bUJCs962ogGOOgV/+Eq6+Gvo3cn9gSZIkSapiCFaLGD914bYAXK2svILxUxcmIbiiAoqKkuD74IOwYQPsvz+MG5c0uDriiDRVLkmSJKk9MQSrRSyvY69fYqTH28XwzceSPX0//BD22AOuuipZ5ztiBGS5i5ckSZKkpmMIVovo1zOXkqog3HfdKi6ZN5384iIO+3hJ0tDq/POT4HvhhdC5c5qrlSRJktReGYLVIr578r68+Iu/csHcZzhx6VtkEXltvyG8/t07OOYbN8Dee6e7REmSJEkZwBCs5rNlCzz+OBQUcMHDD3PB5s0s7bUfvz31Gl486Vyu/cyohrtDS5IkSVITMgSracUIL76YNLi6915YvRp694YvfhHGjmXAsGF8I4R0VylJkiQpQxmClZIG9/hduBAmTEg+Fi2C3FzIz4frroOzzkrW/UqSJElSmhmC1aD69vjtuPpjzi+enoz6vvpq0sn5zDPhlltgzBjo3j3NlUuSJEnS9gzBalDNPX47l2/inHdeJr+4iBE/fQ0qK2HoUPjVr+Dqq6FfvzRXK0mSJEn1MwSrQStWb+DUJW8yZl4Ro99+kW5byli2R2/+csJlfPl/boG8vHSXKEmSJEkpMQSrbjHCG2/AXXfx8l//j17rP2Fdp648fNhpFOaN4pX98+i3Z1e+bACWJEmS1IYYgtuJBhtXpWrpUpg4MVnnW1wMOTlsOfUMvrrXMKYOPI7NHToCkJuTzbjRg5v4u5AkSZKk5mUIbgfqa1wFpBaES0vhgQeS4Dt9enLs1FPhz3+GK66g3157ccacEmY3RciWJEmSpDQKMcZ015AWw4YNi7NmzUp3GU3ilJ89S0lp2Q7H+/fMZeZ3zqj7TVu2wOOPw113wSOPwObNcOihyZZG11wDBx3UzFVLkiRJUvMIIcyOMQ6r65wjwe3A8joCcJ3HY4QXXkhGfO+7D1avhj594KabYOxYOO44CKEFKpYkSZKk9DAEtwP9eubWORLcr2du8sXChUnwnTAB3n8funRJ9vEdOxbOOgs6+GsgSZIkKTNkpbsA7b5xoweTm5O93bH9Nq/jT588B8cfD4cdBj/9KRxyCPzjH7BiRRKKzz3XACxJkiQpo5iA2oHqBlW/f/h1jpg1jasXzuDE92aTVVEBxx4Lv/41XH019O2b5kolSZIkKb0MwbugybYjagoVFfDMM+QXFJA/aRJ8+ikMGADf+lYy3XnIkPTUJUmSJEmtkCG4kXZ7O6KmECO8/noypXnixGR6c48eSVfnsWOT7Y2ynOkuSZIkSbUZghtp/NSF2wJwtbLyCsZPXdj8IXjJkiT0FhTAvHmQkwMXXpgE3/PPh86dm/f5kiRJktTGGYIbKeXtiJrKmjXwwANJ8J0xIzl22mnwl7/A5ZfDXns1z3MlSZIkqR0yBDdSg9sRNYXNm+Gxx5Lg+8gjsGULDB4Mt9+eTHk+8MCme5YkSZIkZRBDcCONGz14uzXBALk52YwbPXj3blxZCS+8kATf++5LRoD32Qe+9KVkuvOxx0IIu1m9JEmSJGW2VhuCQwg3Ap8BhgI9gANjjItrXbMn8F/AxVWHpgD/HmMsba66qtf9Nll36AULkuA7YQIsXgxdusCllybB98wz3cdXkiRJkppQa05YXYAngYeA39RzzURgAHBu1ev/Ae4CLmrOwvKH9t+9JlgrV8I998Bdd8Hs2Ukn57PPhh//GPLzoVu3JqtVkiRJkvRPrTYExxh/CxBCGFbX+RDC4STh99QY44tVx74IPBdCGBxjXNhStabk00+hsDAZ9X3qqWR/3+OOg9/8Bq6+GvbdN90VSpIkSVK712pDcApOAjYAL9Q4NhP4FDgZSH8I3roVnnkmCb6TJydB+IAD4DvfgWuvhcMPT3eFkiRJkpRR2nII3hdYFWOM1QdijDGE8FHVufSIEebMSaY63313MvW5Z88k9I4dC6eckkx/liRJkiS1uBYNwSGE24HvNXDZqBjjtGZ6/o3AjQADBgxo2psvXgwTJyajvvPnQ8eOcOGFSfA9/3zo1KlpnydJkiRJarSWHgn+LVDQwDVLU7zXCqB3CCFUjwaHEALQp+rcDmKMdwJ3AgwbNizWdU2jrFkD99+fBN/nnkuOnXYa3HknXH457Lnnbj9CkiRJktR0WjQExxg/Bj5uotu9CHQjWRtcvS74JKAr268TbnqrV8MNN8Ajj8CWLXDYYfCTn8A118DAgc36aEmSJEnSrmu1a4JDCPuSrO09tOrQkBBCT2BpjHF1jHF+COEJ4C9V05wB/gI80uydoXv2hGXL4MtfTqY7Dx0KITTrIyVJkiRJu6/VhmDgJuCWGq8frfr8OeDvVV9fA/wemFr1egrwlWavLCsLXn652R8jSZIkSWparTYExxhvBW5t4Jo1wNiWqEeSJEmS1Pa5V48kSZIkKWMYgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjGEIliRJkiRlDEOwJEmSJCljGIIlSZIkSRnDECxJkiRJyhiGYEmSJElSxjAES5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpY4QYY7prSIsQwipgSbrrUNr1Aj5OdxHKOP7eKR38vVM6+HundPD3TgAHxBh713UiY0OwBBBCmBVjHJbuOpRZ/L1TOvh7p3Tw907p4O+dGuJ0aEmSJElSxjAES5IkSZIyhiFYme7OdBegjOTvndLB3zulg793Sgd/77RTrgmWJEmSJGUMR4IlSZIkSRnDECxJkiRJyhiGYGW8EMJeIYTfhxAWhBDKQggfhBD+FELYO921qX0LIdwYQigKIZSGEGIIYWC6a1L7E0L4Ugjh/RDCphDC7BDCaemuSe1bCGFECGFKCKGk6v/brk93TWrfQgg3hxBeDSGsCyGsCiE8HEI4It11qfUyBEvQD+gPfAs4EhgLjADuTmdRyghdgCeBW9Nch9qpEMJVwO+AnwJDgReAx0MIA9JamNq7bsBbwNeAsjTXoswwEvgjcDJwBrAVeDqEsFc6i1LrZWMsqQ4hhPOBR4CeMcZ16a5H7VsIYRjwKnBgjHFxmstROxJCeBl4M8Z4Q41j7wAPxBhvTl9lyhQhhA3AV2KMf093LcocIYRuwFogP8b4cLrrUevjSLBUtz2AzcDGdBciSbsihNAROI5ktkFNT5KMlkhSe9WdJOesSXchap0MwVItIYSewI+Bv8YYt6a5HEnaVb2AbGBlreMrgX1bvhxJajG/A14HXkxzHWqlDMFqt0IIt1c15NjZx8ha7+kGPAyUkKwRlhplV37vJElS0wgh/Bo4FbgsxliR7nrUOnVIdwFSM/otUNDANUurv6gKwI9VvbwwxripmepS+/ZbGvF7JzWjj4EKYJ9ax/cBVrR8OZLUvEIIvwGuBkbFGBelux61XoZgtVsxxo9J/hHYoBBCd+BxIADnxhg3NGdtar8a83snNacY45YQwmzgbOD+GqfOBh5MT1WS1DxCCL8DriIJwAvSXY9aN0OwMl5VAH6SpBlWPtA1hNC16vTqGOOWdNWm9i2EsC/J2sxDqw4NqVqTvjTGuDpthak9+TVwVwjhFWAmcBPJtnB/TmtVateqZlYdXPUyCxgQQjiG5O9UZ8KoyYUQ/gBcR/LvuDVVf78CbHBgQ3VxiyRlvKr1mUX1nB4VY5zWYsUoo4QQbgVuqePU59xORE0lhPAlkh4HfUn2bv16jHFGeqtSe7aTv1f/L8Z4fYsWo4wQQqgv0NwWY7y1JWtR22AIliRJkiRlDLtDS5IkSZIyhiFYkiRJkpQxDMGSJEmSpIxhCJYkSZIkZQxDsCRJkiQpYxiCJUmSJEkZwxAsSZIkScoYhmBJUrsWQhgYQoghhGHprqUxQgjXhxA2NOH92uTPoT4hhL+HEB6p77UkSfUxBEuS2qyqULezj7+nu8ZUVNV6ea3D9wIHpaGW/iGEO0MIy0IIW0IIJSGEv4YQ9mvpWqrqGVn18+lV69TXgLHpqEmS1LZ1SHcBkiTthr41vr4Q+GutY2XAni1aUQ0hhJwYY/muvDfGWEZSf4sJIRwIvAC8D/wL8A4wCPgJ8GoI4aQY4+KWrKk+Mca16a5BktQ2ORIsSWqzYowrqj+A0trHagWlA0IIT4UQNoYQ5oUQzq55rxDCkBDCoyGE9SGEj0IId4cQ9q1xPiuE8IMQwgchhM0hhLkhhEtqnK+ebvyZEMKzIYQy4ItV5z5X9cxNIYS3QwhfDyFkVZ1bXHWL+6vev7jq+A7ToUMI54cQXg4hlIUQPgkhPBxC6Fx1bmwI4dUa9d8fQujfyB/pH4BK4KwY4zMxxqUxxiLgrKrjf6hRy7QQwn/Xqq/2FOVzQwjPhRDWhBBWhxCmhhAOr+NndlldfzYhhIFAUdXlq2qO7jc0/TkkvhVCeK/q5zU3hDC21jU/DCEsqfrzXBFC+Ecjf16SpDbIECxJyhQ/Af4LOBp4FbgnhNANIITQF5gBvAWcQBL6ugEPVYdVkum344BvA0cCk4FJIYRjaj3nDuCPwBCgMIRwA/BT4IfA4cB/Vt3jS1XXH1/1+QaSUezjqUMI4VxgCvAUcBwwCpjOP/8u7wjcUvX9XQj0Au5O8WdDCGEv4FzgDzHGjTXPVb3+I3BeCKExI+tdgd+S/ExHAmuBh0MIHWtdV9+fzQfAZVXX5JH8fL6W4rNvBz4PfJnkz+IO4C8hhAsAQgiXAd8k+XM4hORn9kojvjdJUhvldGhJUqb4TYzxYYAQwneBzwLHAM8D/wa8EWP8dvXFIYTPAquBYSTh6JvAL2OME6su+WEIYUTV8ZojjL+PMT5Q4z4/AL5V49j7IYSfkYSv/44xrgohAJRWjWjX5wfAAzHG79c49mb1FzHGv9U4viiE8G/A/BDCfjHGZTv7wVQ5BAjA/HrOz6s6fwgphsUY44M1X4cQPgesIwnFz9c4VeefTYzx+RDC6qprPooxfpzKc0MIXYFvAOfEGJ+rOvx+COEEklD8KHAA8CHwZNWU9aXArFTuL0lq2xwJliRlijdrfL286nOfqs/HASNCCBuqP0hGIQEGhRD2APoBM2vd83mSUcaatgWpEEJvYH+SEcia9/4ZyVrbxhgKPFPfyRDCsSGEh6qm966vUceARj6nIVtSvTCEMCiEMLFqSvI6YCXJvz1q17SzP5tdMQToDDxR6+f+b/zz535/1TXvhxD+N4RwRQih0248U5LURjgSLEnKFNsaVMUYY9Xoa/V/DM4iGR38Zh3vW0kyAlqfWOv1pzW+rr7/TSQNp5pF1cjnVOBp4DrgI5Lp0M+RTJNOxTsk38sQkqnetQ0BtpI0zYJkjXDtn0tOrdePAMtI1kaXVL1/Xh017ezPZldUv/cikhHeHZ4VY/wghDAYOJNk+vuvgFtCCCfGGD9FktRuORIsSRK8RrLmdEmM8d1aH+tjjOtIRihPqfW+U0lCXZ1ijCur3jeojvu+W+PSciC7gRrnkAS2uhxGEnq/G2OcEWNcQCNHUmOMq4EngC+FELrUPFf1+svA5BrNxlaxfSduSNb0Vr9n76q6fhpjfDrGOB/oTuP/A3z1yHNDP5+a5gGbgQPq+Lkvqb4oxrgpxvhojPHrJGux89jxz1iS1M44EixJUtL1+Abg3hDCz0kC3kHAlcB/xhjXA+OBH4UQ3gFmk6wDPg04toF73wL8PoRQCjxGMlp6LNA/xnhH1TWLgTNDCNOBzTHGNXXc5yckTaXeBSaSjMKeA/yFZLRzM/CVEMIfSBpw/bixPwSSoPsi8HQI4ftsv0VSOfDVGtc+C/w2hHAxsJBktHf/qu8FYA3wMXBDCOEDoD/Jz3BrI2taQjJCfUEI4WGgLMa4YWdviDGuDyH8EvhlSIaVZ5A0OhsOVMYY7wwhXE/y76CXgQ3AVVXf4zuNrE+S1MY4EixJyngxxupR3kqS0dBikmC8ueoDku7F44FfkHSRHgNcFmN8o4F7/w/wryTTlN8gmaJ8I/+cVgxJx+hRJOuQ59Rzn8eqnnle1TXTq95TGWNcRbKvbz7JKOgtJI2hGiXG+D5JI7Bi4C6SQFtE8nM5plbjrr/V+JgJrKfGNOoYYyVJsDyK5Of1B5LmXptphBhjSdX38xOSqen/vfN3bPMD4FaSKe7FJF21L+OfP/dSku7Rz1XVdxlwadXPQJLUjoUYay9lkiRJSoQQvkKyXvaKGOOUdNcjSdLuMgRLkqSdCiFcSTIt+rcxxrJ01yNJ0u4wBEuSJEmSMoZrgiVJkiRJGcMQLEmSJEnKGIZgSZIkSVLGMARLkiRJkjKGIViSJEmSlDEMwZIkSZKkjPH/Abt+syY60BWiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from statsmodels import graphics\n", "graphics.gofplots.qqplot(resid, line='r')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GLM: Gamma for proportional count response\n", "\n", "### Load Scottish Parliament Voting data\n", "\n", " In the example above, we printed the ``NOTE`` attribute to learn about the\n", " Star98 dataset. statsmodels datasets ships with other useful information. For\n", " example: " ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.424431Z", "iopub.status.busy": "2022-05-09T08:26:26.423464Z", "iopub.status.idle": "2022-05-09T08:26:26.429037Z", "shell.execute_reply": "2022-05-09T08:26:26.428605Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "This data is based on the example in Gill and describes the proportion of\n", "voters who voted Yes to grant the Scottish Parliament taxation powers.\n", "The data are divided into 32 council districts. This example's explanatory\n", "variables include the amount of council tax collected in pounds sterling as\n", "of April 1997 per two adults before adjustments, the female percentage of\n", "total claims for unemployment benefits as of January, 1998, the standardized\n", "mortality rate (UK is 100), the percentage of labor force participation,\n", "regional GDP, the percentage of children aged 5 to 15, and an interaction term\n", "between female unemployment and the council tax.\n", "\n", "The original source files and variable information are included in\n", "/scotland/src/\n", "\n" ] } ], "source": [ "print(sm.datasets.scotland.DESCRLONG)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Load the data and add a constant to the exogenous variables:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.432803Z", "iopub.status.busy": "2022-05-09T08:26:26.431859Z", "iopub.status.idle": "2022-05-09T08:26:26.448292Z", "shell.execute_reply": "2022-05-09T08:26:26.447841Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " COUTAX UNEMPF MOR ACT GDP AGE COUTAX_FEMALEUNEMP const\n", "0 712.0 21.0 105.0 82.4 13566.0 12.3 14952.0 1.0\n", "1 643.0 26.5 97.0 80.2 13566.0 15.3 17039.5 1.0\n", "2 679.0 28.3 113.0 86.3 9611.0 13.9 19215.7 1.0\n", "3 801.0 27.1 109.0 80.4 9483.0 13.6 21707.1 1.0\n", "4 753.0 22.0 115.0 64.7 9265.0 14.6 16566.0 1.0\n", "0 60.3\n", "1 52.3\n", "2 53.4\n", "3 57.0\n", "4 68.7\n", "Name: YES, dtype: float64\n" ] } ], "source": [ "data2 = sm.datasets.scotland.load()\n", "data2.exog = sm.add_constant(data2.exog, prepend=False)\n", "print(data2.exog.head())\n", "print(data2.endog.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model Fit and summary" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.452105Z", "iopub.status.busy": "2022-05-09T08:26:26.451169Z", "iopub.status.idle": "2022-05-09T08:26:26.465528Z", "shell.execute_reply": "2022-05-09T08:26:26.465109Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: YES No. Observations: 32\n", "Model: GLM Df Residuals: 24\n", "Model Family: Gamma Df Model: 7\n", "Link Function: log Scale: 0.0035927\n", "Method: IRLS Log-Likelihood: -83.110\n", "Date: Mon, 09 May 2022 Deviance: 0.087988\n", "Time: 08:26:26 Pearson chi2: 0.0862\n", "No. Iterations: 7 Pseudo R-squ. (CS): 0.9797\n", "Covariance Type: nonrobust \n", "======================================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "--------------------------------------------------------------------------------------\n", "COUTAX -0.0024 0.001 -2.466 0.014 -0.004 -0.000\n", "UNEMPF -0.1005 0.031 -3.269 0.001 -0.161 -0.040\n", "MOR 0.0048 0.002 2.946 0.003 0.002 0.008\n", "ACT -0.0067 0.003 -2.534 0.011 -0.012 -0.002\n", "GDP 8.173e-06 7.19e-06 1.136 0.256 -5.93e-06 2.23e-05\n", "AGE 0.0298 0.015 2.009 0.045 0.001 0.059\n", "COUTAX_FEMALEUNEMP 0.0001 4.33e-05 2.724 0.006 3.31e-05 0.000\n", "const 5.6581 0.680 8.318 0.000 4.325 6.991\n", "======================================================================================\n" ] } ], "source": [ "glm_gamma = sm.GLM(data2.endog, data2.exog, family=sm.families.Gamma(sm.families.links.log()))\n", "glm_results = glm_gamma.fit()\n", "print(glm_results.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GLM: Gaussian distribution with a noncanonical link\n", "\n", "### Artificial data" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.469312Z", "iopub.status.busy": "2022-05-09T08:26:26.468382Z", "iopub.status.idle": "2022-05-09T08:26:26.473819Z", "shell.execute_reply": "2022-05-09T08:26:26.473403Z" } }, "outputs": [], "source": [ "nobs2 = 100\n", "x = np.arange(nobs2)\n", "np.random.seed(54321)\n", "X = np.column_stack((x,x**2))\n", "X = sm.add_constant(X, prepend=False)\n", "lny = np.exp(-(.03*x + .0001*x**2 - 1.0)) + .001 * np.random.rand(nobs2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Fit and summary (artificial data)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2022-05-09T08:26:26.477485Z", "iopub.status.busy": "2022-05-09T08:26:26.476563Z", "iopub.status.idle": "2022-05-09T08:26:26.488753Z", "shell.execute_reply": "2022-05-09T08:26:26.488335Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: y No. Observations: 100\n", "Model: GLM Df Residuals: 97\n", "Model Family: Gaussian Df Model: 2\n", "Link Function: log Scale: 1.0531e-07\n", "Method: IRLS Log-Likelihood: 662.92\n", "Date: Mon, 09 May 2022 Deviance: 1.0215e-05\n", "Time: 08:26:26 Pearson chi2: 1.02e-05\n", "No. Iterations: 7 Pseudo R-squ. (CS): 1.000\n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "x1 -0.0300 5.6e-06 -5361.316 0.000 -0.030 -0.030\n", "x2 -9.939e-05 1.05e-07 -951.091 0.000 -9.96e-05 -9.92e-05\n", "const 1.0003 5.39e-05 1.86e+04 0.000 1.000 1.000\n", "==============================================================================\n" ] } ], "source": [ "gauss_log = sm.GLM(lny, X, family=sm.families.Gaussian(sm.families.links.log()))\n", "gauss_log_results = gauss_log.fit()\n", "print(gauss_log_results.summary())" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 4 }