{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Prediction (out of sample)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:24.181124Z", "iopub.status.busy": "2023-02-02T19:18:24.180167Z", "iopub.status.idle": "2023-02-02T19:18:24.891351Z", "shell.execute_reply": "2023-02-02T19:18:24.890621Z" } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:24.896018Z", "iopub.status.busy": "2023-02-02T19:18:24.894886Z", "iopub.status.idle": "2023-02-02T19:18:25.896682Z", "shell.execute_reply": "2023-02-02T19:18:25.895793Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import statsmodels.api as sm\n", "\n", "plt.rc(\"figure\", figsize=(16, 8))\n", "plt.rc(\"font\", size=14)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Artificial data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:25.900645Z", "iopub.status.busy": "2023-02-02T19:18:25.900350Z", "iopub.status.idle": "2023-02-02T19:18:25.906641Z", "shell.execute_reply": "2023-02-02T19:18:25.905887Z" } }, "outputs": [], "source": [ "nsample = 50\n", "sig = 0.25\n", "x1 = np.linspace(0, 20, nsample)\n", "X = np.column_stack((x1, np.sin(x1), (x1 - 5) ** 2))\n", "X = sm.add_constant(X)\n", "beta = [5.0, 0.5, 0.5, -0.02]\n", "y_true = np.dot(X, beta)\n", "y = y_true + sig * np.random.normal(size=nsample)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:25.910000Z", "iopub.status.busy": "2023-02-02T19:18:25.909737Z", "iopub.status.idle": "2023-02-02T19:18:25.923153Z", "shell.execute_reply": "2023-02-02T19:18:25.922400Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " OLS Regression Results \n", "==============================================================================\n", "Dep. Variable: y R-squared: 0.979\n", "Model: OLS Adj. R-squared: 0.978\n", "Method: Least Squares F-statistic: 727.4\n", "Date: Thu, 02 Feb 2023 Prob (F-statistic): 9.48e-39\n", "Time: 19:18:25 Log-Likelihood: -3.9258\n", "No. Observations: 50 AIC: 15.85\n", "Df Residuals: 46 BIC: 23.50\n", "Df Model: 3 \n", "Covariance Type: nonrobust \n", "==============================================================================\n", " coef std err t P>|t| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "const 5.0807 0.093 54.626 0.000 4.893 5.268\n", "x1 0.4825 0.014 33.637 0.000 0.454 0.511\n", "x2 0.4907 0.056 8.703 0.000 0.377 0.604\n", "x3 -0.0188 0.001 -14.920 0.000 -0.021 -0.016\n", "==============================================================================\n", "Omnibus: 1.490 Durbin-Watson: 1.925\n", "Prob(Omnibus): 0.475 Jarque-Bera (JB): 1.481\n", "Skew: 0.351 Prob(JB): 0.477\n", "Kurtosis: 2.533 Cond. No. 221.\n", "==============================================================================\n", "\n", "Notes:\n", "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" ] } ], "source": [ "olsmod = sm.OLS(y, X)\n", "olsres = olsmod.fit()\n", "print(olsres.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## In-sample prediction" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:25.926195Z", "iopub.status.busy": "2023-02-02T19:18:25.925937Z", "iopub.status.idle": "2023-02-02T19:18:25.931427Z", "shell.execute_reply": "2023-02-02T19:18:25.930661Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 4.61090954 5.07619314 5.50321368 5.86522684 6.1451402 6.33832144\n", " 6.45335946 6.51065321 6.5390602 6.57115534 6.63787891 6.76345322\n", " 6.96140289 7.23233287 7.56382897 7.93249752 8.30780889 8.6571134\n", " 8.95100557 9.16815538 9.2988127 9.34640924 9.3269947 9.26659989\n", " 9.19695989 9.1503001 9.15404171 9.22629643 9.37289083 9.58640903\n", " 9.84741112 10.12762706 10.3946014 10.61702559 10.76988191 10.83855379\n", " 10.82122728 10.72918907 10.58497214 10.41865363 10.26291327 10.14766417\n", " 10.09513821 10.11623337 10.20872327 10.35762292 10.5376507 10.71738211\n", " 10.86441268 10.95068197]\n" ] } ], "source": [ "ypred = olsres.predict(X)\n", "print(ypred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create a new sample of explanatory variables Xnew, predict and plot" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:25.934686Z", "iopub.status.busy": "2023-02-02T19:18:25.934431Z", "iopub.status.idle": "2023-02-02T19:18:25.940342Z", "shell.execute_reply": "2023-02-02T19:18:25.939719Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[10.94653822 10.81323249 10.57000932 10.26072461 9.94310812 9.67462925\n", " 9.49842652 9.43274574 9.46647281 9.56185486]\n" ] } ], "source": [ "x1n = np.linspace(20.5, 25, 10)\n", "Xnew = np.column_stack((x1n, np.sin(x1n), (x1n - 5) ** 2))\n", "Xnew = sm.add_constant(Xnew)\n", "ynewpred = olsres.predict(Xnew) # predict out of sample\n", "print(ynewpred)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot comparison" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:25.944032Z", "iopub.status.busy": "2023-02-02T19:18:25.943090Z", "iopub.status.idle": "2023-02-02T19:18:26.300372Z", "shell.execute_reply": "2023-02-02T19:18:26.299430Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ4AAAKYCAYAAAAyv2XkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADCG0lEQVR4nOzde3zO9f/H8ce1g81pW8NsJEZSKBKLKMeiIhSFiFSkElFENIdyKN+i+qUih5IiikROOeTYaBE5MxKbYWxz2GzX9fn98W6b2cbGtmuH5/12u252fa7PdV2va3axPfd6v182y7IsRERERERERERERC7j4uwCREREREREREREJO9RcCgiIiIiIiIiIiJpKDgUERERERERERGRNBQcioiIiIiIiIiISBoKDkVERERERERERCQNBYciIiIiIiIiIiKShoJDERERERERERERScPN2QVkhcPh4Pjx45QsWRKbzebsckRERERERERERPIVy7KIjY2lXLlyuLhcvacwXwWHx48fp0KFCs4uQ0REREREREREJF87evQoN99881XPyVfBYcmSJQHzwry8vJxcjYiIiIiIiIiISP4SExNDhQoVknO2q8lXwWHS8mQvLy8FhyIiIiIiIiIiItcpM9sAajiKiIiIiIiIiIiIpKHgUERERERERERERNJQcCgiIiIiIiIiIiJpKDgUERERERERERGRNBQcioiIiIiIiIiISBoKDkVERERERERERCQNN2cXkBsSEhKw2+3OLkMk33F1dcXd3d3ZZYiIiIiIiIiIExTo4DAmJoZTp04RHx/v7FJE8i0PDw9Kly6Nl5eXs0sRERERERERkVxUYIPDmJgYjh07RokSJShdujTu7u7YbDZnlyWSb1iWRUJCAtHR0Rw7dgxA4aGIiIiIiIhIIVJgg8NTp05RokQJbr75ZgWGItepaNGilCxZkn///ZdTp04pOBQREREREREpRArkcJSEhATi4+Px9vZWaChyg2w2G97e3sTHx5OQkODsckREREREREQklxTI4DBpEIqGOohkj6T3koYMiYiIiIiIiBQeBTI4TKJuQ5HsofeSiIiIiIiISOFToINDERERERERERERuT4KDkVERERERERERCQNBYciIiIiIiIiIiKShoLDAurw4cPYbLZUl2LFilGuXDmaN2/O22+/zcGDB2/4eUaMGIHNZmPNmjU3XrSIiIiIiIiIiOQZbs4uQHJWlSpV6Nq1KwDx8fFERkYSEhLC6NGjGTNmDIMGDeLdd9/V8AsREREREREREUlFweENsDssQsKiiIyNw6+kJ0GBvri65K0A7tZbb2XEiBFpjq9fv55u3boxduxYXF1dGT16dO4XJyIiIiIiIiIieZaWKl+npTvDaTR+FZ2nbKbfd9voPGUzjcavYunOcGeXlimNGjVi6dKleHh48N5773H06FEAoqOjGT9+PI0bN6ZcuXIUKVKEcuXK8cwzz6RZ2tykSRNGjhwJQNOmTZOXRFeqVCn5nNWrV9OzZ0+qVatGiRIlKFGiBHXr1uWLL77ItdcqIiIiIiIiIiJZp47D67B0Zzh9ZoViXXE8IjqOPrNCmdy1Dq1qBjiltqyoVq0aTz75JF9//TULFiygb9++7N69m7fffpumTZvSvn17ihcvzp49e5g9ezaLFy8mNDSUihUrAtCjRw8A1q5dS/fu3ZMDQx8fn+TnGD9+PAcOHKB+/fq0b9+es2fPsnTpUnr37s3evXv53//+l8uvWkRERCT75YeVKCIiIiJZpeAwi+wOi5GLdqUJDQEswAaMXLSLB6v754tvFps0acLXX3/Nli1bALjjjjsIDw/H19c31XmrV6+mRYsWvPPOO0yZMgUwweHhw4dZu3YtPXr0oEmTJmkef/LkyQQGBqY6lpiYyCOPPMKkSZPo168ft9xyS868OBEREZFcsHRnOCMX7SI8Oi75WIC3J8FtqueLXyaLiIiIZERLlbMoJCwq1TeFV7KA8Og4QsKicq+oG1CuXDkATp06BYC3t3ea0BDMUuQaNWqwcuXKLD3+laEhgJubGy+++CJ2u53Vq1dfR9UiIiIieUPSSpQrvz9MWomSX7axEREREUmPgsMsiozNODS8nvPyojVr1tCuXTsCAgJwd3dP3rtwx44dHD9+PEuPFRsbS3BwMLVq1aJEiRLJj/XEE08AZPnxRERERPKKa61EAbMSxe5I7wwRERGRvE9LlbPIr6Rntp7nbEnBXZkyZQD4/vvveeqppyhRogQtW7akUqVKFCtWDJvNxowZMzhy5EimH/vSpUs0adKE0NBQ7r77brp160apUqVwc3Pj8OHDzJw5k/j4+Bx5XSIiIiI5LSsrURpUKZV7hYmIiIhkEwWHWRQU6EuAtycR0XHp/nbZBvh7mw2x84M1a9YAUK9ePQBGjBiBp6cnf/zxB1WrVk117nfffZelx164cCGhoaE899xzTJ06Nc1jzZw58/oLFxEREXGywrASRURERAo3LVXOIlcXG8FtqgMmJLxc0vXgNtXzxWCUffv2MXfuXDw8PGjfvj0ABw8e5I477kgTGoaHh3Po0KE0j+Hq6gqA3W5Pc9vBgwcBaNu2bZrb1q1bd8P1i4iIiDhTQVuJIiIiInIlBYfXoVXNACZ3rYO/d+pvAv29PZnctU6+mJ63YcMGWrZsSXx8PG+++Sbly5cHoGLFihw4cIATJ04knxsXF0efPn1ISEhI8zhJg1SOHj2a5raKFSsCsH79+lTH165dmzyZWURERCS/SlqJktGvi22Y6crOWIlid1hsOniahduOsengae2zKJKP6P0rInmJlipfp1Y1A3iwuj8hYVFExsbhV9J8U5jXOg0PHDjAiBEjALPnYGRkJCEhIezYsQNXV1eGDRtGcHBw8vl9+/alb9++3H333XTo0IHExERWrFiBZVnUqlWL7du3p3r8pk2bYrPZGDp0KH///Tfe3t74+Pjwyiuv0KZNGypVqsR7773Hzp07qVmzJnv37uXnn3+mffv2zJs3Lzc/FSIiIiLZKmklSp9Zodgg1TY2zlyJsnRnOCMX7Uq1/2KAtyfBbarni19wixRmev+KSF5jsywr3/z6IiYmBm9vb6Kjo/Hy8srwvLi4OMLCwggMDMTTs3AuDTl8+DCBgYGpjhUtWhQfHx9uv/12GjVqRPfu3alSpUqqcyzL4osvvuDjjz/m4MGD+Pj48OijjzJ27Fg6duzI2rVrufJLZubMmfzvf/9j3759xMfHU7FiRQ4fPgxAWFgYb7zxBr/99hvnz5+nRo0aDBw4kLJly9K0aVOCg4OTg03Ju/SeEhERyVhe+kF/6c5w+swKTbMXd1J0mV9Wx4gURnr/ikhuyWy+BgoORSQT9J4SERG5OrvDcvpKFLvDotH4VRlOek4a4rd+cLM8t0pGpLDT+1dEclNWgkMtVRYRERERuUGuLjYaVCnl1BpCwqIyDB3ALKUOj44jJCzK6bWKSGp6/4pIXqXhKCIiIiIiBUBkbMahw/WcJyK5R+9fEcmr1HEoIiIiIpJH3MiSZ7+SmdtOJLPniUju0ftXRPIqBYciIiIiInnAjQ5ZCQr0JcDbk4jouDTDFSBlj7SgQN/sK1pEsoXevyKSV2mpsoiIiIiIkyVNU71yj7OI6Dj6zApl6c7waz6Gq4uN4DbVgZQprEmSrge3qa7BCiJ5kN6/IpJXKTgUEREREXEiu8Ni5KJd6XYZJR0buWgXdkd6Z6TWqmYAk7vWwd879XJGf29PJnetk6nORRFxDr1/RSQv0lJlEREREREnyu5pqq1qBvBgdf/r3itRRJxH718RyWsUHIqIiIiIOFFOTFN1dbFlKmQUkbxH718RyUu0VFlERERExIk0TVVERETyKgWHIiIiIiJOlDRNNaOFiDbMdGVNUxUREZHcpuBQRERERMSJNE1VRERE8ioFhyIiIiIiTqZpqiIiIpIXaTiKiIiIiEgeoGmqIiIiktcoOBQRERERySM0TVVERETykiwvVZ41axa9e/embt26eHh4YLPZmDFjRrrnbtu2jaFDh9KyZUvKlCmDzWajSZMmN1iyXI3NZsvSRUREREREREREJD1Z7jgcNmwYR44coXTp0gQEBHDkyJEMz12wYAFjx46lSJEi3HbbbZw6deqGipVrCw4OTnNs4sSJREdHp3ubiIiIiIiIiIhIerIcHE6dOpWqVatSsWJFxo0bx5AhQzI8t2PHjjz22GPceeednD59moAAbeqc00aMGJHm2IwZM4iOjk73NhERERERERERkfRkealyixYtqFixYqbOrVGjBnXq1MHd3T3LhUnOOnz4MDabjR49erB7927at29PqVKlsNlsHD58ONXt6clo2XlsbCzBwcHUqFGDokWL4uPjQ8uWLVm/fn3OviAREREREREREclWGo5SyB04cID69etz55130qNHD06fPk2RIkW4dOlSlh8rKiqKBx54gL///puGDRvy4osvEhMTw8KFC2natCnff/897dq1y/4XISIiIiIiIiIi2S5PB4fx8fHEx8cnX4+Jibnhx7QsuHDhhh8mxxUrBrkxu2TDhg28/fbbjBw5MtXxw4cPZ/mx+vbty99//82UKVN4/vnnk4+PHTuWunXr0qtXL1q1aoWnp+eNli0iIiIiIiIiIjksTweHY8eOTRNo3agLF6BEiWx9yBxx7hwUL57zz+Pv789bb711w49z6tQp5syZQ7NmzVKFhgB+fn688cYbvPrqq6xcuZLWrVvf8POJiIiIiIiIiEjOytPB4ZAhQxgwYEDy9ZiYGCpUqODEigqeWrVqUaRIkRt+nC1btmC324mPj093CMv+/fsB2LNnj4JDERERERGRa7Cs3FmFJiJyNXk6OPTw8MDDwyNbH7NYMdPNl9cVK5Y7z1O2bNlseZyoqCjALH3esGFDhuedP38+W55PREREREQkr7A7LELCooiMjcOvpCdBgb64umQ99YuJgfnfOwiZ/Af3171Il26u4OaW8cX1Kre7uip5FJEblqeDw5xgs+XOEuD8wpbBfyQuLmbgdmJiYprboqOj0xzz8vICYODAgUyYMCEbKxQREREREcm7lu4MZ+SiXYRHxyUfC/D2JLhNdVrVDLjm/RMSYNkyWPrZYQKWTqerfQbP8g/8AXx+g8W5uKQNFAMC4NVXoXt3yOZGHREpeApdcCiZ4+PjA8CxY8fS3Pbnn3+mOVavXj1sNhubNm3K6dJERERERETyhKU7w+kzKxTriuMR0XH0mRXK5K510g0PLQtCQmDOjIuc+2YBT8Z+ySf8mnx7nKc3ruUDcLclQuJ/F7s95eMrL9aVFfzH4YBLl8wlSVQU9O4No0bBoEHw/PO5t+RNRPIdF2cXIHmTl5cX1apVY/369Rw4cCD5eGxsLEOGDElzvr+/P08++SQbN27k/fffx0rnP67ff/+dC/lhpLWIiIiIE0VHw9GjqX/OF5G8x+6wGLloV5rQEEg+NnLRLuyOlDMOHoRRIy3aVwxla/2XGf5ZOb6I7UKL/0LDmHtbYM3+Fs8zEbgf2A3790NYmPlH4fhxiIw0wV9MjJn8eemSCQftdvPxhQvmtqgoc254uLlvWJh5rF27YNIkKF8ejh2Dfv0gMBDefx9iY3P+kyYi+U6WOw6nTp3K+vXrAdixY0fysTVr1gDQqFGj5Km6e/bsYdy4cQBcvHgx+ViPHj2SH2/GjBnXW7vksIEDB9KrVy8aNGhAx44dcTgc/PLLL9SrVy/d8z/99FP27t3LoEGD+Prrr2nQoAE+Pj4cPXqUrVu3sn//fsLDwymm32aJiIiIJLMs2LsXFi2Cn3+GDRtMBgDg6wv+/lC2rPnz8svlx0qXNtuZiUjuCQmLSrU8+UoWEB4dx4rQM4Rt8WXhtNNU3Tqb5/iSt9mefN5Fv1vw6P0sLj174FWp0vUV4+JiLu7u1z73jjtMx+HMmTB2LBw+bDoPx42D/v2hb1/4bwWaiEiWg8P169czc+bMVMeuHIiRFBxGRESkOffEiROpjik4zLteeOEFEhISmDhxIlOnTiUgIIAePXowbNiwdCcx+/r6snHjRj755BPmzJnDN998g8PhwN/fn1q1ajF8+HBKly7thFciIiIikrdcugTr1qWEhQcPpr7dzc2sPoyKMpddu67+eC4u4OeXNmC85Rbo0MHcJiLZKzL2KqFhogsXDvhx8W9/Jr2/hR6OaSxkAR6YVmK7uweOtu1x79WTos2bmzdxbvLwgF694NlnYfZsGDMG9u2Dt9+GCRPglVdMiFimTO7WJSJ5js1Kb01pHhUTE4O3tzfR0dHJwzjSExcXR1hYGIGBgXh6euZihSIFk95TIiIiN+7UKfjlFxMWLltmVhMmKVIEmjaF1q3N5ZZb4MwZiIgwlxMnUj6+8tjJkxlvb5b02J07mxWJd9+d869TpLDYdPA0nadsTr5uWRB/1Jfzf5enzJ44ul/6hmeZzi0cTT4noUZt3F98Drp0MS3FeYXdDvPmwTvvwM6d5lixYvDii/D662agiogUGJnN10DBoYhkgt5TIiIiWWdZplMwqatw0yazFVkSPz949FFo0wZatICSJa/veRITTXiYXri4aZMZwJDk/vtNgNi2relqFJHrZ3dYNBq/iojoOOIjS3JuyW20PrGK5/iS5qxKPi/R6ybcnnkaevbM++m9w2H+0Ro9Gv74wxzz8DADVAYNMr/VEJF8T8GhQg6RbKX3lIiISObEx8PatSlh4eHDqW+vVcsEha1bQ716ubM68fffzSyE7783ISOYn/1feQWeey5vNT2J5DcLt4bTve95am0+ype8wK2YfQcc2NhQsRYlX+5F7b7PQn77HtqyTGv06NGwcaM55uYG3bvDm2/Crbc6tz4RuSEKDhVyiGQrvadERESubtcuCA6GpUvh3LmU4x4e0Lx5yhLkChUy8WB2u7mks6f0jTh2DCZPhs8/N8umwaxE7NYNXn0VqlfP1qcTKfBWrYIBL8TywqE3eZlPAYgo5st3d7dk7X2P0vuZZrSqmc+X+FqW+W3IO+/Ar2byMy4uZv+DoUP1D4dIPqXgUCGHSLbSe0pERCR9djtMnAhvvWW6DcFsBZYUFDZvDsWLZ+KBzp41qePChWYjxOhos3a5VCkzMvnyy5XHkq6XKpWpsPHiRfj2W9OF+NdfKccfesgEiA8/nPtzGkTyk6goeOMN+HfaMr6gFxX5B4ATnZ5h60tv4lvOj6BAX1xdbE6uNJtt2mQCxCVLzHWbDR5/3PwDmNeXYItIKgoOFXKIZCu9p0RERNI6dAh69DDTkQEeeQRGjoQ6dTIZvB0+bNY0L1xoOnqS1hHfCC+v1GFiuXLw5JNmE8UrikpqJJo0CX76KWX/xapVoW9f89qud99FkYLIsmDuXBj+yhnePDWQnkwHwFExEJcvp5jfFBQGoaHw7rvwww8px1q3NgFi/frOq0tEMk3BoUIOkWyl95SIiEgKy4IvvoCBA+H8eShRAj780OwXaLtag5HDYX7g/uknExZe3u4HcMcd8NhjZnLJbbeZtqZTp8zl9On0P066fvp06skrV7r1VjMdtUcPEypeISwMPvkEvvzSNDuCySB79jQhYuXKWf40iRQo//wDL70ErosX8hkvEkAEls2G7dVXTYiWqdbiAmbnThg7Fr77LuXfn65dYepUs0+DiORZCg4VcohkK72nREREjGPHTEC4bJm53rgxzJgBlSplcIe4OFi92oSFP/0Ex4+n3ObiAo0ambDwscdMq9/1cjjMcucrg8U//oCvv4aYGHOehwc89RT06QP33psm6Tx3DmbOhI8+gn37zDGbzQx0eestCAq6/hJF8iO7HT79FD4YcpIx51+lM98B4LitGi7TvoSGDZ1cYR6wbx+MGwdffWU+YY0bw4IF4OPj7MpEJAMKDhVyiGQrvadERKSwsyz45hvTfXf2rBmQOnas2RMwzbLkU6fMHmA//WQSxsunpRQvDq1amaDw0UfT7f7LdufOmU0NJ0+GP/9MOV67tgkQu3QxbZOXcThg+XKzjHnpUnPMxcV0WY4alf8GxIpcj5074YXnLSr+PoeP6UsZTmG5umJ74w0zDUlvhNR+/RXat4fYWKhRw+zXmqmJUCKS2xQcKuQQyVZ6T4mISGF28qRZ5Zu0nVe9eqax5vbbLzvp3DmYMsV02axfn3rZcLlyKUuQmzRxXthgWRASYgLEOXNMNySYjQyfecaEiDVqpLnbnj1mHsI335jrt99uuhLVfSgFVVwcjBkDM8ceZ1LiS7RjIQDWnXdimzYN6tZ1coV52PbtZsPX48fNv32//AJ33eXsqkTkClkJDjUvTUREREQkAwsWmCzthx/AzQ1Gj4aNG68IDdetg1q1YMAA+O03ExrWqgXDh8PWrfDvvyasa9XKuR1KNptZnjxjhllz/b//meXRsbHwf/8HNWvCAw+Y7sSkEdGY1zprltmW0d/fBIkNGsDQoalOEykQ1q2D2rUs/hk9g22JNWjHQix3dxgxAtvWrQoNr6VWLTN9uXp1Ex7ef7/pRBSRfEvBoYiIiIjIFc6ehe7dzaq7kydNphYSAsOGmQARMG1Jr79u9vM6dMgsyfvoIzMteds2s6b3nnuuMTHFSXx9TdC5Zw+sWAGPPw6uriY16dLFvJYhQ8xr+c9jj5mlm126mGx07Fjz8rZudd7LEMku0dGms7jrA0eYuO9hZvAsN3EWq25dbH/8YZYmFyni7DLzh1tuMZ3XjRub/VUffjilZVlE8h0FhyIiIiIil1mxAu680yxHdnGBwYNNOHb33ZedtHUr1KljuvYsC559FnbsMJsgVqzotNqzzMUFWrSA+fPhyBEYMcIsLzx50gw7qFzZ7MX4889gt1OqlPn5f/58KFMG/v4b6tc3zZWXLjn7xYhcnwULoPrtDmyfT2YnNWnFMiwPDxg/HtumTeYfBMmam24ye7w++SQkJJhpy+PGmX8vRSRfUXAoIiIiIgKcPw8vvwwPPWRWF996q2nAGzfODCMGzA/AwcEmLdu9G8qWNUNQpk0Db2+n1n/Dypc3r+3IEbM2+8EHzQ/5S5aYscp16sCWLYBpUPz7b5MJ2O1mD8R69VLPXhHJ6xISzICj19sfYHZEUybzEiU5Bw0bYtu+HQYNuqzFWLLMw8NsfTBwoLk+ZAi88or5R0NE8g0FhyLXcPjwYWw2Gz169Eh1vEmTJthycOlRpUqVqFSpUo49voiIiKTYsMFszfXpp+b6yy+b1cb33XfZSTt3mj0CR40yP/g++aRJz9q0cUbJOcfNzazRXr4c9u0zP/T7+MBff5nAdOBAOH+eMmXMjJW5c6F0aXNzUBCMHGkCGXEuu8Ni08HTLNx2jE0HT2N3qNPrcuHh0KwZnPh4DtupRWN+w160OI6PPjJ7lVar5uwSCwYXF5gwASZONNs2fPopPPEEXLjg7MpEJJMUHBZwq1ev5qmnnqJChQp4eHjg6+tLo0aN+PDDD4lLmqR3haRALCIi4pqPb1kWs2bNolmzZpQqVYoiRYpQtmxZ7r77bl566SXWrl2b3S+pwOjRowc2m43Dl+0dJCIiIrkrLs4sRb7/fjh4EG6+2SxV/uQTKF78v5Psdnj/fbOh359/mv0Bv/vOpGalSjm1/hxXtar5oX/fvpTNDT/4wCzdXLkSgI4dTX76+OOQmGhWO997rwkSxTmW7gyn0fhVdJ6ymX7fbaPzlM00Gr+KpTvDnV1anrBxI9SrY6fN+kHMoRPFucDGW+6i8TOTaHiuOkt3nXB2iQVPv37mtwweHmbSUvPmcOqUs6sSkUxQcFhAJSYm0rt3b5o1a8bixYupX78+AwYMoFOnTkRERDBgwABq1arFgQMHbuh5evbsSbdu3di2bRuPPvooAwcOpHPnzvj4+PDll18yZcqUbHpFec9XX33F7t27c+zxf/31V37VBDIREZEcc/YsNGkC771nVuR27262KWzR4rKTDhwwG/wPGmQ28Xv0UdN5+NRTTqraScqUMZsbLl5sBqeEhZmlzM8+C1FR+PnBvHlmVaKvr8lX69aFd981YaLknqU7w+kzK5Tw6NRNAhHRcfSZFVqow0PLMgPE2z0QxbSIhxnE+wBMvrcDXZ8azb8+/vo85aQOHcxvZm66CTZvNi3dhw45uyoRuQZt2FBADRkyhC+++IJ69erx448/Ur58+eTb7HY7o0aNYtSoUbRq1YrQ0FC8vLyy/Bzr1q1jxowZ1K5dm7Vr16Z5jLNnz7Jr164bfi151S233JKjj1+lSpUcfXwREZHC7OxZs5fhli0m6PryS2jX7rITHA747DN44w2zpK5kSbPU7tln8+aU5NzyyCOmvfCtt0xb5owZZg/Ejz/G1rEjnTrZaNIEevc2Wz8OGwY//ggzZ0KNGs4uvuCzOyxGLtpFeouSLcAGjFy0iwer++PqUri+ji9eNFOT//zqLzbRnioc4oKbB2880p/Fd9yffF5h/zzluPvvN3tDPPww7N8PDRqY4Uv16jm7MhHJgDoOC6B9+/bxwQcf4Ovry6JFi1KFhgCurq6MHDmSLl26cPDgQSZMmHBdz7Np0yYAunfvnm7w6OPjw32pNgbK2IwZM7DZbMyYMYOFCxcSFBREsWLFKFOmDD179uTEibTLBWw2G02aNOHYsWM888wz+Pv74+Liwpo1a5LP+e2332jTpg2lS5fGw8ODqlWrMmzYMC6ks6eG3W5n/Pjx3HrrrXh6enLrrbcyduxYHA5HujVfbY/DhQsX8tBDD1GqVCk8PT2pVKkS3bp1Y+fOnYDZv3DmzJkABAYGYrPZkl9Pkoz2ODx//jzBwcHcfvvteHp64uvry6OPPsqGDRvSnDtixAhsNhtr1qxh9uzZ1K5dm6JFixIQEEC/fv24ePFiuvWLiIgUZJeHhqVKwapVV4SGR49Cy5Zmo8MLF6BpU7PutmfPwh0aJilZEj76CNavhzvugMhI04HZti38+y/+/mZK7ddfm60R//jDzFUZP17dhzktJCwqTafh5SwgPDqOkLCo3CsqDwgLM81tF7+ayyYaUIVD/ONdlse7TUgVGiYprJ+nXHPHHbBpkxlVHxlpWr+XLHF2VSKSgcLXcWhZ+WMj1mLFrvsb05kzZ+JwOOjVqxdly5bN8Lzhw4cze/Zspk2bxqhRo7L8PKX+29Nn375911VneubPn8+yZcvo0KEDLVq0YPPmzUyfPp1169YREhLCTTfdlOr806dP06BBA3x9fenUqRNxcXHJIebkyZN5+eWX8fHxoU2bNvj5+bF161beffddVq9ezerVqylSpEjyY/Xq1Ytp06YRGBjIyy+/TFxcHB988AEbN27M0msYOHBgcnDbrl07/Pz8OHr0KCtXruSee+6hZs2a9O/fnxkzZrB9+3b69euHj48PwDWHocTFxdGsWTNCQkKoU6cO/fv358SJE8yZM4dly5bx7bff0rFjxzT3++STT1i6dClt27alWbNmLF26lI8++ohTp07xzTffZOn1iYiI5GdXhoa//mqGogDm+8SvvjJjVmNioGhRk3a9/LLZ4L+QsjssQsKiiIyNw6+kJ0GBvqYL6777zJrksWNhzBhYtAjWrIHx47H17k3Xri40awa9epkVzm++aboPZ8yA22939qsqmCJjMw4Nr+e8gmDZMni6k53Xz77Fm4wHILJBY9rUe5HooiWvet/C9HnKdQEBsHatWb68fDk89pjp8n7+eWdXJiJXsvKR6OhoC7Cio6Ovet7FixetXbt2WRcvXkx747lzlmW+Lczbl3Pnrvvz1KRJEwuwVqxYcc1zy5UrZwHWP//8k3yscePGFmCFh4df9b5Hjx61vLy8LJvNZnXp0sX6/vvvrcOHD19XzdOnT7cwv9yzli5dmuq2N9980wKsV155JdXxpPOfffZZKzExMdVtf//9t+Xm5mbVqlXLOnXqVKrbxo4dawHWhAkTko+tXr3aAqxatWpZ5y773P/7779W6dKlLcDq3r17qsdJ+jxdbtGiRRZg3XnnnWmeNyEhwYqIiEi+3r17dwuwwsLC0v2cVKxY0apYsWKqYyNHjrQA6+mnn7YcDkfy8dDQUKtIkSKWj4+PFRMTk3w8ODjYAixvb29rz549yccvXLhg3XbbbZaLi4t17NixdJ//cld9T4mIiOQTZ85YVr165lutUqUsa9u2y26MiLCstm1TvherX9+y9u51UqV5xy87jlv1x6y0Kg7+OflSf8xK65cdx1OfuHOn+Zwlff4aNbKs3bsty7Ish8Oypk+3LC8vc5Onp2V9+WXuv5bCYOOBU6n+rjK6bDxw6toPls/Z7Zb1zjuW5ctp6xdapnxtDhpkbdx7Qp+nvOLSJcvq3j3l7+ftt80/GiKSozKbr1mWZRXeX50WYEnTkCtUqHDNc5POCQ/P+ua/N998M/Pnz6dChQrMnj2bjh07UqlSJfz8/HjqqadYtWpVlh+zRYsWtGzZMtWxt956Cx8fH7766qs0y4aLFCnCe++9h6ura6rjn3/+OYmJiXz88cfJnZFJBg0aRJkyZfj222+Tj3311VcAvP322xRPHqEI5cuXp1+/fpmu/9NPPwVg0qRJaZ7Xzc3tqh2gmTFz5kzc3d0ZN25cqmXSd999N927d+fs2bMsWLAgzf369etHtWrVkq8XLVqUzp0743A4+OOPP26oJhERkfzgqp2G8+dDzZpm0qe7u+mgW7cObrvNmSU7XZaGbNSoYZYuf/SRGUe9fr35BL/7LrbEBHr0MFsjPvSQmWT93HOmsUi7pmSvoEBfArw9yWjdkg0I8DZdowVZdLSZ8v3dsB2EUI9WLMMqVsxMQx8/nqBby+jzlFe4u8P06TB8uLk+apT5ByIhwbl1iUiywhccFisG587l/UuxYs7+TGVKixYtOHjwICtWrGD48OE88sgjxMfHM3fuXJo3b87QoUOz9Hj33592j5ESJUpQu3ZtYmJiOHTF1K3AwEBKly6d5j6bN28GYNmyZYwYMSLVZdSoUbi7u7Nnz57k87dv357h86d3LCMhISF4eHjQuHHjTN8ns5Je/6233srNN9+c5vamTZsCsG3btjS33XPPPWmOJT3G2bNns7VOERGRvCbD0NBuN+toO3SAU6fMwa1bzZpat8K3o8/lrjVkA8zwCLvjsjNcXaFvX5MQtmplplAPGwb33ANbtnDzzfDLL/DOO2ZHni+/hIYNNVQ1O7m62AhuUx0gTSiWdD24TfUCPfBj1y4ICgL3hd+zmfpU4RBUqoRt48bkaej6POUxNpsJDD//3GwLMX06tGkDsbHOrkxEKIx7HNps5regBZi/vz979uzh6NGjqbrM0nP06FEAAgICrvv53NzcaNGiBS1atAAgMTGRGTNm0KdPH8aOHUuHDh2oU6dOph4ro468pOPR0dGZOj8qymxk/O6772bqeaOjo3FxcUk3hMxKl2B0dDTly5fHJQf2QYqJiblqPUl/h0nnXS694TVu//1AZLfbs6tEERGRPOeqoWH37vDNN+YH1SFD4O234bL9jwuzrAzZaFAl9SoLKlY0gw5mz4Z+/WDHDqhfH/r3x2XUKN56qzhBQdCli9ki8Z57zCCV1q1z9jUVFq1qBjC5ax1GLtqV6u/Q39uT4DbVaVXz+r/vz+u+/x6e62FnyIVhDGGcOdiihek0vGI1UGH+POVZvXpBuXIm4F22zAxNWbwY/P2dXZlIoVb4Og4LgaRJxr/++utVz9uzZw/Hjx+nfPnymVrWnFlubm48//zzdOnSBYDVq1dn+r7pTU++/Li3t3eq4xlNNU4KymJiYrAsK8NLEm9vbxwOB6dOncp0Tenx8fEhIiIiw0nMNyLpNWVUT9IS9fRCQhERkcIovenJtWphRvs+84wJDd3cYO5c0wan0DDZDQ/ZsNng6adh927zp8MBH3xgloSvWMGDD0JoKNx7r/l7atPGNCfq95nZo1XNANYPbsa3L9RnUqfafPtCfdYPblZgw7DERBg0CHo9eYa5Fx5NCQ1ff920uV4RGiYpbJ+nfKF1a1i9GsqUMf9INGgAe/c6uyqRQk3BYQH0zDPP4OLiwpQpUzh58mSG5yV14/Xs2TNH6ihRokSW77Nu3bo0x86dO8e2bdvw8vKicuXKmXqce++9F0hZsnwttf7b5Ci950/vWEaCgoKIj49n7dq11zw3aV/GzHb8Jb3+AwcOcOzYsTS3r1mzBoDatWtnul4REZGCKr3Q8K67MAlDt26mGy4pNHziCWeXm+f4lfTMnvPKlIFZs0wHYoUKcPiw+YsZMIAKZS/x22/wyivm1HffhZYt4SrfvkoWuLrYaFClFG1rl6dBlVIFdtntyZPm62bJ+zvZkrSfYdGi5j3+/vvX3HagsHye8pWgINi0CW691fybcd99sGGDs6sSKbQUHBZA1apVo1+/fpw+fZo2bdqkGXzicDgYPXo0s2bNokqVKrz++uvX9TxLly5l4cKFJCYmprntwIEDfP/99wA0atQo04+5cuVKli1blurYu+++y9mzZ5MD0cx46aWXcHNzo2/fvvzzzz9pbj979ix//vln8vVu3boBMGrUKM6fP598/NixY0yaNCnT9b/88suAGUaStFw6SWJiYqpuQV9fs9ly0nLxzOjevTsJCQkMGTIkVcfkX3/9xYwZM/D29qZdu3aZfjwREZGC6OxZePDBdELDhASzPva778yG/PPmQfv2zi43T8r2IRsPP2z2PvzveyU+/BAaNaLIv4f4+GPT/FmsmFlKXqcOZPJ3v1LIbdlilrrftGoem6nPrRxM2c+wc2dnlyc3okoV2LjRtCVHRUHz5uYfcxHJdYVvj8NC4r333iM6Oppp06ZRtWpVHn30UapUqUJMTAzLly9n//79VK1alSVLlmS4tLVfv34ULVo03dsmTJjAnj17eO211yhdujQPPPAAVapUwbIsDhw4wJIlS7h06RJ9+vRJ7v7LjNatW9OmTRs6dOhApUqV2Lx5M6tXr6ZKlSqMGjUq049Ts2ZNPv30U/r06UO1atV45JFHqFKlCrGxsRw6dIi1a9fSo0cPPvvsM8AMFnn22WeZPn06d955J+3btyc+Pp45c+ZQv359fv7550w97yOPPMLrr7/OhAkTqFq1Ku3bt8fPz49jx47x66+/8vrrr9O/f38AmjVrxoQJE+jVqxdPPPEExYsXp2LFiskhZnoGDRrE4sWL+frrr9m9ezfNmzcnMjKSOXPmkJiYyJQpUyhZsmSmP08iIiIFTVJouHVrBqHhvHkmNJw/36yPlXQlDY/oMysUG6QaknLdwyNKloRPPjEdhz16mNTn7rth6lS6dOlIrVqm+XPvXnjgAbOy+eWXzapnkSt9+SW80sfO8IThDGWsOdi8OcyZk+HSZMlnypQx/4g/9RT8/LP5Rc9vv/2354SI5BorH4mOjrYAKzo6+qrnXbx40dq1a5d18eLFXKos71qxYoXVsWNHq1y5cpa7u7vl4+NjNWjQwPrf//5nXbhwId37NG7c2MJ8f5jhJSwszIqMjLSmTJlidejQwapWrZpVsmRJy93d3QoICLBat25tzZs3L9N1Tp8+3QKs6dOnWwsWLLDq1atnFS1a1CpVqpTVo0cPKzw8PM19AKtx48ZXfdyQkBCrU6dOya+/dOnSVp06daw333zT2r17d6pzExMTrbFjx1qVK1e2ihQpYlWuXNkaM2aMdeDAAQuwunfvnu7nKT3z58+3mjZtanl7e1seHh5WpUqVrG7dulk7d+5Mdd57771nVa1a1XJ3d0/zeipWrGhVrFgxzWOfO3fOGj58uHXbbbdZRYoUsXx8fKyHH37YWrduXZpzg4ODLcBavXp1mtsu/5xfi95TIiKSH5w5Y1l161oWWFapUpa1fft/N1y6ZFmPP25uKFLEshYtcmaZ+covO45b9cestCoO/jn5Un/MSuuXHcdv7IGPHLGshg3N3wlY1osvWtaFC1ZMjGV16JByuHNny4qNzZ7XIgVDXJxl9e5tWT5EWYt5OOWLZeBAy0pIcHZ5khMuXrSsBx4wf8/lypl/P0TkhmQ2X7Msy7JZlmWlSRPzqJiYGLy9vYmOjr7qAIi4uDjCwsIIDAzE0zNz+7OIc82YMSO5469Hjx7OLkeuoPeUiIjkdZd3GpYubZa83nUXcOmS6VZZsMAMP/nxR3jkESdXm7/YHRYhYVFExsbhV9IsT86WfeASEyE4GMaONdHPXXfBnDlY1W5n0iR44w1zSvXqpkH09ttv/Cklf/v3X+jQAWJ//5uFtOVWDmIVLYpt6lTTUSwF15kzcP/9ZsuDO+6A9evBN5NbJYhIGpnN10B7HIqIiIhIPnfV0LBjRxMaenjAwoUKDa9Djg2PcHMzE1GWLgU/P/jrL6hbF9usr+nf3wxWDQiAXbugXj34b/tsKaTWrjX7GZb7/Qd+516zn2HFitg2bFBoWBjcdJOZkF2+vJnW3q4dxGVu+ruI3BgFhyIiIiKSb2UYGsbHm9akn34CT08TGrZq5exyJT0PPQTbtkGzZnD+PDzzDPToQaPa5wgNhSZN4Nw5ePJJGDDAbFeZ19gdFpsOnmbhtmNsOngauyPfLOrK8ywLJk2CFs0c9I0cxg88QQnOm6+XrVvNPplSOFSoYMJDLy9Ytw66dQO73dlViRR4Cg5FREREJF+6amj4xBOwaJEJDX/6CVq2dHa5cjUBAbB8OYweDS4uMHMm1KuHf+RfrFgBgweb0z78EJo2hWPHnFvu5ZbuDKfR+FV0nrKZft9to/OUzTQav4qlO8OdXVq+d+ECdO0Kwf3P8qPjMYbxrrnhtddg2TLzxpfC5c47TRe5u7sZdjVggEmXRSTHKDiUPKFHjx5YlqX9DUVERCRTMgwN4+LM5M3Fi6FoUTOJ88EHnV2uZIarKwwbZtYolysHe/bAvffiNu0Lxo21+PFH02i0YQPUqWNOc7alO8PpMyuU8OjUSyYjouPoMytU4eENOHQIGjSA0Nm7CSGI1izG8vSEr782I7fd3JxdojhL06bw1Vfm448+gv/9z7n1iBRwCg5FREREJF+JiblKaNiunVnKlhQaNm/u7HIlqx54ALZvN/tRxsVB797QqRPtmkazdav5u46MhBYtzBaJzlqpaHdYjFy0i/R6nZKOjVy0S8uWr8PSpVC3LgT+tYAQ273cxn6oUMHsZ9i1q7PLk7ygUyeYMMF8/MYbMHu2c+sRKcAUHIqIiIhIvmG3mzkIaULDixehbVuzfLFYMViyxOyBJnlGlvYBLF3aLDWfMMF0ls2dC3XqUDV6K5s2mW0QHQ7ToPjgg85ZuhwSFpWm0/ByFhAeHUdIWFTuFZXPORwmDH70YQf9zgSzgPaUtGKhcWPzpq9Tx9klSl4yYAD0728+7tEDVq1yZjUiBVaB7u+2tNeBSLbQe0lERPKKN980q5A9PU02eNddmI3Q2raFlSuheHFzwwMPOLtUuczSneGMXLQrVdAW4O1JcJvqtKoZkP6dXFxg4EBo1Mh0Fx06BPfdR7H332fG9Fdp2tTGK6+YJcu1asGMGdC6de68HoDI2MxNdM3seYVddDR07w6rF0bzI914jEXmhldfNQGyu7tzC5S8x2Yzy5SPHTNj19u3N0NT7rrL2ZWJFCgFsuPQ1dUVgIS8OHJNJB9Kei8lvbdEREScYcaMlJVp06dDvXqY0LBNm5TQ8JdfMh0aahJu7rjhfQDvvRf+/NMMvElIgP79sbVvR4/HovjjDzNU9/Rp82Xw6qtmdXNu8Cvpma3nFWa7dkFQEOxZuIcQ7jWhoYeHedNPmqTQUDLm4mL2O3zgAbOPxcMPwz//OLsqkQKlQAaH7u7ueHh4EB0drU4pkRtkWRbR0dF4eHjgrm/aRETESTZsgF69zMfDh5sGNM6fNy1mq1ZBiRJmY7T778/U42kSbu7Itn0AfXxMR9H//R8UKQI//UR8zbuI3PADH846Tb/+5v4ff2xyxt27s/NVpC8o0JcAb09sGdxuw3RVBgX65nwx+dj8+ebv7LZ9i9hiC6Iae+Hmm03nWPfuzi5P8gNPTzNpuUYNOH4cWrWCM2ecXZVIgWGz8lGyFhMTg7e3N9HR0Xh5eV3z3GPHjlGiRAm8vb1xd3fHZsvov3URuZJlWSQkJBAdHc25c+coX778Nd93IiIiOeHwYdONdPKkaTqbOxdcLp6HRx+FtWuhZEkTGt53X6YeL6kD7spvgpO+U5zctU7Gy2clSzYdPE3nKZuved63L9SnQZVSmXrMDfNWUOHFZ7nl9DEc2Pj83if49tGetCh1L5+M8OXkSbPN5UcfQc+eZjVjTkn6WgJSfT3pa+na7HZ46y14b7yDYbzDKILNDfffb0LismWdW6DkP0ePmlHcx46Zr6Ply02oKCJpZCVfK7DBYdL5p06dIj4+PheqEymYPDw8KF26tEJDERFxithYaNgQduwwS1LXrYPitgtmOdpvv4GXlxmIUr9+ph7P7rBoNH5VhkMtbIC/tyfrBzfD1UW/dL5RC7cdo99326553qROtWlbu/w1z0sK6orFXyD41y94csdKAHb5BfJa64F079qB6WPKstIcpmNH+OIL07CYU65r/8ZC7vRp6NwZNq+IYSbdac8Cc8Mrr8AHH2hpsly/HTvMvqgxMdChA8yZY5Yzi0gqWcnXCvRwFC8vL7y8vEhISMButzu7HJF8x9XVVcuTRUTEaRwO6NrV/BxYtiwsXAjFizrgqe4poeHy5WadYyZlZRJuZjvgJGPZuQ/g5cuez3sUY9Aj/VlRtT5jl35M9cgwfprZn8/Dd7Bk8f8xcZIrQ4eaxrWQEJg9O9MNqVnWqmYAD1b3JyQsisjYOPxKmuXJCp7TFxoKjz8ORY7s43dbO+6wdpvl5599Bs8+6+zyJL+7806zbLllS5g3D157DSZOzNnWY5ECrkAHh0nc3d0VfoiIiIjkM0OHwk8/mRkJCxdChQrA8GDzw6C7O/z8c5ZCQ9Ak3NyWtA9gRHRcuvscJnV4ZmYfwPRC3xVV6/NnuWqMXfoxDx4I4dVfPif6/h28MXc2jRtXpHNnM4z5gQdg5EgzlTsnZr25utgUNF/DpUswdiy8+y48mLCYb12exssRDeXKwQ8/ZPm9LJKhpk3NwJTOnc2eBRUqwOuvO7sqkXxLPbsiIiIikud8/TWMH28+njbtv0xh1ix45x1zcMqUTA9CuZwm4eYuVxcbwW2qA6QZIpJ0PbhN9Ux152UU5p4qfhMvPD6cwa36ct7dE++QjXDXXQTt+Yo/Qy2eftrspzdsGLRoYbY/k9y1ZQvccw+MHpHImwmjWEQbExo2bAh//KHQULJfp04wYYL5+I034NtvnVuPSD6m4FBERERE8pRNm+D5583HQ4dCly7Axo3w3HPm4ODB1z1tVZNwc1+rmgFM7loHf+/UYay/t2eWhodcNcy12ZhTqyUPP/sxMXWCzP5m3bvj1bMDsyae4quvoHhxWLMG7rrLdLJKzrtwwTR61a8P1s6dbHFrwCiCccGCF180E9H9/Z1dphRUAwZAv37m4+7dzdebiGRZgR6OIiIiIiL5yz//QL16EBkJ7drB/Png8s/hlLHKyQev//ffmoTrHHaHdUP7ACYNtrnWsuf1rzfGdcL78PbbkJhoNsicNo39VR+hc2fT4AZmDsf772voak5Zs8b8AuDIwQQG8R4jXEbh7rhkJtV89BF06+bsEqUwcDhM9+H335t9cdetM789ECnkspKvqeNQRERERPKEc+fgscdMaFirllmu7HIuBtq0MaHh3Xeb5co3OCEzuzrgJGuS9gFsW7s8DaqUyvLwkEwve3Z3gyFDzFSU6tXhxAl49FGq/u9FNi4/l7zV2SefmDx6164be12SWnS0aSZs2hSKHfyLP9zr8y7DTGjYujX8/bdCQ8k9Li5mv8MHHjCdyA8/bH5DJSKZpo5DEREREXE6hwM6dIAffwQ/P7Mn2i3l7dC2LSxeDAEBJgi6+eZse84b7YAT51i6M5yRi3alGpQS4O1JcJvqaUPfuDiz3v3DD831W2+Fr79mWXR9nnnGhNRFi5qt0Hr3zpnBKYXJ4sXm83jiWAJvMo5gl9G4ORLgpptMl+HTT2u6rTjHmTPQqJH5TUH16rB+vfm6FCmkspKvKTgUEREREacbNsxMWy1SxCxxbNAAsz/Vhx+ataS//WbWMItwHaHvqlXQowccPWo6kIYO5UTvt+n+vDvLlplTatSAcePg0UeVbWXVqVNmK7nZs6EW25hd5FmqX9pmbnzsMfjsMxP+izjT0aNmw83jx81wreXLtVeBFFoKDkVEREQk35g92zQiAcycCc88A3zxhWldApg7Fzp2dFp9UkCcPQt9+5rl7gB16uD4ahb/t+oOgoNNQxKYFY3vvadBv5lhWTBnjvm0Rp+6xFuMYZjLu7g6EsHXFz7+GDp3VhIrecdff5nQMCbGtLnPmXPD21+I5Efa41BERERE8oXff4eePc3Hgwb9FxquWgUvv2wOjhql0FCyh4+P2Thz7lwTaoWG4lK3Dn2tjzh0wMHgwSnNrfXrmy+7/fudXXTedeyYmVXUuTPcfOpP/vIMIpiRJjRs397sZdili0JDyVvuugsWLAB3d5g3z3S2559eKhGnUHAoIiIiIk7x778meIiPN/NPxowB9u2DJ54w03C7dDFrmEWyU8eOsGMHtGxp9kDs1w+fx5sxrv3v7NtnVjTbbCZTqF7dTF+OjHR20XmHZcGUKeZz88tPl3jH5W22ugRxe9x2KFUKvvvOTD7393d2qSLpa9rUtLcDTJoEH3zg3HpE8jgtVRYRERGRXHf+vFkSGhoKd94JGzZAyYQo0+q1f7/Z5HDVKu0/JTnHsszeewMHwsWL5ljr1jBqFDvc7ubNN2HJEnO4RAl44w3TnFSihPNKdrZDh+CFF8xbsw5/8F3RZ6l6cYe5sUMH+L//M9ONcpgGG0m2mDDBvLEBvv/efA2LFBLa41BERERE8iyHA556ynR0lS5tJihXKp8ArVqZROKWW8wE5bJlnV2qFAaHD8Po0aYDyW43x554AkaOZHVkDQYNgq1bzeGyZWHkSHjuOXBzc1rFuS4uDj791DQA2y/GM9ptFK87xuPisEOZMiYwzKUtBbI0VVvkaiwLXn0VPvnE/JJq1ar/JnOJFHza41BERERE8qyRI01o6O4OP/4IlSpaZj3oqlWmnevnnxUaSu6pVAm+/BJ27zZTemw2s9T2zjtpOvVpfv96H999B5Urw4kT8OKLULOm+drNPy0Y1+fvv6F/fyhf3jRm1ri4hT3F72FQ4hgTGj71lDkpF0PDPrNCU4WGABHRcfSZFcrSneG5UocUEDYbTJxo9sqIizMTwA8edHZVInmOgkMRERERyTVz5ph5JwCffw6NGmH2mPriC/ND3LffmrXLIrmtalUzcXnHDrNk0bJg9mxcalbnqWU92b0kjI8+Ml2ye/fC44+br98NG5xdePa6cAFmzICGDU1AOmkSOKLO8EnJN/ndVp/A83+b5cjz5pn9DMuUyZW67A6LkYt2kV5Wm3Rs5KJd2B0FPM2V7OXqCrNnQ506cOoUPPIIREU5uyqRPEXBoYiIiIjkiq1bzeAJMN1Lzz4LLF5sroDZb6p1a2eVJ2LUqGH2OwsNNZ1IdjtMn06RmrfRd1cfDv32L8OGQdGisHGjCQ/bt4c9e5xd+I3Zts0MMw8IMO/NjRuhnssfrLjlOU55lOfl2PG4WA4ztOjvv81y7lwUEhaVptPwchYQHh1HSJhCH8mipE73ChXMgK6kqV0iAig4FBEREZFcEBlpwpW4OHj0URg/HtPZ1amT2fTwhRfgtdecXaYUMnaHxaaDp1m47RibDp5O3a12993w00+weTM89JCZ9P3ZZ5S8+1ZGx/bn0MYIXngBXFxgwQLTnderF6xZY77O84PYWNPsW6+eebmffgqXYi7yeukZHCsfRIijLi3+mYZr/EXTCfzjj/DNN6btMpdFxmbuk5rZ80RSCQgw05C8vGDdOujZs+DvRSCSSRqOIiIiIiI5KjERHnzQBCrVqsHvv4N3fCQEBcGRI9C0KSxbZjY9FMklWR6ysW6dmQ7y22/metGi0Lcv+9q+waD3SrNwYcqpnp6mE7F5c2jWDO65x6yIzAssywwkmjLF7Axw/rw5fofbft6r/Bktw6fjHnvGHHR3N/sX9ulj1i7bnDe5eNPB03Sesvma5337Qn0aVCmVCxVJgbRyJTz8sPmPa9gwMzhJpADSVGURERERyTMGDoQPPjCrwUJC4I7AOJOmbNpk9pXbvBl8fZ1dphQiSUM2rvxBKCkWm9y1TvrhoWXBr7/C8OHm6xbMF3b//my6byCfzPJh1SqIiEh9N29vaNzYBInNm0P16rmfwZ09a5oFv/gC/vrLHHMlkd4Bi3ijxGQq7V+RcnLFimYKTM+eZj/DPMDusGg0fhUR0XHp7nNoA/y9PVk/uBmuLs4LOKUAmDbNjE4HMzipZ0/n1iOSAxQcioiIiEie8N130Lmz+Xj+fHi8vQXdupkEw8fHtB/edptTa5TCJSmAymi/vEwFUJZlljUOHw5//mmO+fjAgAFY7R9nN3fw62oXfv3VdNpGR6e+e9myJjtP6kgMDMyuV5eaw2Hy+S++MNs2XrxojlcsEs7/bp9C6/Av8Dh5zBy02Uyn1UsvQatWeadF8jJJgS+QKjy8ZuArklXDhsG774KbG/zyC7Ro4eyKRLKVgkMRERERcbq//oIGDcyU1iFDYMwYzA9iw4aZUGLZMpOciOSibF3yallm37+33zYDQ5LcdBPcdx80aoS9QSP+dK3LyvWerFoF69enBHhJAgNTB4lly6Z9mnPn4PRpM/D18j+vduzMGRMe/vcoPFtpDUN8PuXWnQuwJSaaw6VLw/PPmw0acyrBzEZZXmIucj0sC7p2NROXvbzM+PSaNZ1dlUi2UXAoIiIiIk515owZuHDwoJkrsWQJuC6YDx06mBM++wx693ZukVIoLdx2jH7fbbvmeZM61aZt7fKZe1C7HebOhalTzRLmCxdS316kiHlDNGpEwr2N+N31PpZv9eXXX03Trd2e+vTAqol4lrATF+vKhVhXoqJsJCRkrpQrBRQ9y4S7vqJ9xGSKHrls9HPDhqa78IknwMPj+h48i+wOi5CwKCJj4/Ar6UlQoO91LSvOrscRuar4eLNB77p1cMst5r0doHBaCgYFhyIiIiLiNA4HtGljwsJKlWDrVih1fAfUr28ClX79YOJEZ5cphVSOD9lISIBt20xr4YYNJnSIjEx7Xo0a0KgRF+s0ZLNbI37eWYkFSxI5tDfjIUFFikCpUimX0j6JVCp+kgruEZRziaCsFUGphAh84iIocS4Cz+gIivy1FVtSkFmihOmi6tMH7ror66/tBqhTUPKl06dN9/C+fVCnDqxda95HIvmcgkMRERERcZrgYBg1ykyW3bgR7q4YZbqtDh0y+0T98ovZN+o6qdtIbkSuD9mwLNN6u359ymXv3jSnxfn5s9K3Kr/73clG1wZcoCj+nMDfHknZxEi63OpKVVsstvBwM30lIgJOnjSPfy01a5qwsGtXs+wyl133MBqRvODgQfOLr1OnzG/FfvwxT+4BKpIVCg5FRERExCl++gnatjUff/01dO1sh0cegeXLzf5pW7aYVqnrpK4lyQ5OH7IRGWlS9f+CROuPP1L2HMwqFxcz+djfP/UlIMD8WaWK6ZTK7THO/8mWYTQizrZpEzRtapYvv/IKfPSR095TItlBwaGIiIiI5Lp9+0xjYUwM9O1rfq7izTdh/HgoWtT84FWr1nU/vrqWJDvlpRD6951H+XDMLOr+u4u6/+6mznGzF+HJ4jcRWeImThY3lxZNa1GxRuXUAWHp0nm6+ynHl4aL5JZ586BjR/Pxhx9C//5OLUfkRmQlX7v+NSIiIiIiIv+JjYX27U1oeP/98L//YYZFjB9vTpg27YZCQ7vDYuSiXekuLbUw4eHIRbt4sLq/upYkU1rVDODB6v55Ytl7RKILm2+5i823XH3fwdKdalMxswNb8ojI2PQ7Da/3PBGn6dAB3nsPBg2CAQPMJr7t2jm7KpEc55LVO8yaNYvevXtTt25dPDw8sNlszJgxI8PzY2JiGDBgABUrVsTDw4NKlSrxxhtvcO7cuRupW0RERETyCMuCnj1h1y4oV87khe67/4JnnzUnvPEGdOp0Q88REhaV4VJHMOFheHQcIWFRN/Q8Uri4uthoUKUUbWuXp0GVUk4Lnf1KembreXlJQX5tUgi9/jq8+KL5j69LFwgJcXZFIjkuy8HhsGHD+OKLLzhy5AgB1xhFfv78eRo3bsyHH37I7bffzmuvvUa1atWYMGECzZo1Iy5Ov1USERERye/ef9+s4HJ3N3/6F4kyXRgXLsCDD8LYsTf8HOpakoIsKNCXAG9PMootbZhl1EGBvrlZVrYoyK9NCiGbDT7+GB5+GC5eNMNSwsKcXZVIjspycDh16lQOHz7MyZMnefHFF6967nvvvce2bdsYPHgwy5YtY9y4cSxbtozBgwezZcsWPvzww+suXEREREScb+VKGDLEfPzRR9AgyA6dO5sfpAID4bvvsmX/NXUtSUHm6mIjuE11gDQBW9L14DbV8+Uy/IL82qSQcnODOXPM9huRkfDoo3DmjLOrEskxWQ4OW7RoQcWKFa95nmVZTJ06lRIlSjB8+PBUtw0fPpwSJUowderUrD69iIiIiOQRhw+bFcgOh1mq3Ls3MHSomaBcrBgsWAC+2dNFpK4lKeha1Qxgctc6+HunDr/9vT3z/eCfgvzapJAqWRIWL4by5WH3bnjiCbh0ydlVieSIHBuOsn//fo4fP07Lli0pXrx4qtuKFy9Ow4YNWbZsGUePHqVChQo5VYaIiIiI5ICLF83PSadPQ9268H//B7a5c8zG8QDTp8NdVx/0kBVJXUt9ZoVig1RDUtS1JAVFXhrYkt0K8muTQqp8eRMeNmoEq1fDCy/AjBlmObNIAZLljsPM2r9/PwBVq1ZN9/ak40nnpSc+Pp6YmJhUFxERERFxLsuCPn0gNBRKl4b588Fz73bTdghm4uSTT2b786prSQqDvDKwJScU5NcmhVStWvD992ZLjq++glGjnF2RSLbLsY7D6OhoALy9vdO93cvLK9V56Rk7diwjR47M/uJERERE5LpNngwzZ4KLi9nm6Zbip6FJezMM5aGHYMyYHHtudS2JiEie0qoVfPqp2a9jxAizv+8zzzi7KpFsk2Mdh9lhyJAhREdHJ1+OHj3q7JJERERECrUNG6BfP/Pxe+9BswcSU4ahVK4M336bLcNQrkZdSyIikqf06gWDB5uPn38e1qxxajki2SnHOg6TOg0z6ihMWnacUUcigIeHBx4eHtlfnIiIiIhkWXg4dOgAiYnw1FMwYAAweCisWJHtw1BEJO+wOyx1+Ypcy5gx5pdoc+dC+/awcSPccYezqxK5YTkWHF5rD8Nr7YEoIiIiInnHpUsmNIyIgJo14csvwTbnO3j/fXPC9Olw553OLVJEst3SneGMXLSL8Oi45GMB3p4Et6mufUVFLufiYoaj/PuvCQ0fecT8GaD3ieRvObZUuWrVqpQrV44NGzZw/vz5VLedP3+eDRs2EBgYqInKIiIiIvnAgAHm5x9vb/jxRyh+4LJhKIMH58gwFBFxrqU7w+kzKzRVaAgQER1Hn1mhLN0Z7qTKRPKookVh4UKoUgUOH4YmTeDYMWdXJXJDciw4tNlsPP/885w7d47Ro0enum306NGcO3eOF154IaeeXkRERESyycyZ8H//Zz7+5hu49abT0K4dXLwILVvCu+86tT4RyX52h8XIRbuw0rkt6djIRbuwO9I7Q6QQK10ali+HW26BffugcWP45x9nVyVy3WyWZWXpX/qpU6eyfv16AHbs2EFoaCgNGzbk1ltvBaBRo0Y8//zzgOksbNiwIdu3b+ehhx6iTp06hIaGsnz5curVq8fatWspWrRopp87JiYGb29voqOjk6cyi4iIiEjO2bzZNEzEx5thkcFvJcLDD8PKlWYYypYt2tdQpADadPA0nadsvuZ5375QnwZVSuVCRSL5zOHD0KyZ2fewUiVYtcpMXBbJA7KSr2V5j8P169czc+bMVMc2bNjAhg0bkq8nBYfFixdn7dq1jBgxgvnz57N69WoCAgIYOHAgwcHBWQoNRURERCR3HT4Mbdua0PCxx2D4cGDwEBMaFi+uYSgiBVhkbNy1T8rCeSKFTqVKsHatCQ8PHDCdh6tWwX9NVyL5RZY7Dp1JHYciIiIiuSM6Gho2hL//htq1Yd06KLHoW+jSxZwwdy507OjUGkUk56jjUCSbHD9uwsO9e6FcORMeVqvm7KqkkMtKvpZjexyKiIiISP6UmAhPPWVCw3LlYNEiKHFgGzz3nDnhzTcVGooUcEGBvgR4e2LL4HYbZrpyUKC6jkWuqlw503lYo4YJERs3hl27nF2VSKYpOBQRERGRVPr3h2XLoFgx+OknuNnzVMowlFat4J13nF2iiOQwVxcbwW2qA6QJD5OuB7epjqtLRtGiiCQrWxZWr4a77oITJ8zmwX/95eyqRDJFwaGIiIiIJPv4YzNB2WYzE5TvuSsBOnWCI0egShWYPRtcXZ1dpojkglY1A5jctQ7+3p6pjvt7ezK5ax1a1QxwUmUi+VCZMmaZcp06cPIkNG0KoaHOrkrkmrTHoYiIiOQKu8MiJCyKyNg4/Eqa5W3qVMlbliyBNm3A4YD33oM3Xregd2+YMsUMQ9m8GWrWdHaZIpLL9O+3SDY6exZatoSQEPDxgeXLoV49Z1clhUyOTlUWERERyaqlO8MZuWgX4dEp0zcDvD0JblNdHSt5xF9/mX0NHQ6zleHrrwPvv29CQ5sNvv1WoaFIIeXqYtMAFJHs4uMDK1bAww/Dxo3QogUsXQoNGji7MpF0aamyiIiI5KilO8PpMys0VWgIEBEdR59ZoSzdGe6kyiRJRAS0bg3nzpmVU59+Crb582DwYHPCxImmFVFERERunJeX2Uz4gQcgJgYeegh++83ZVYmkS8GhiIiI5Bi7w2Lkol2kty9K0rGRi3Zhd+SbnVMKnIsXoW1bOHoUbrsN5s+HIqGboVs3c8Krr5qLiIiIZJ8SJcweIc2bm9/cPfyw2QNRJI9RcCgiIiI5JiQsKk2n4eUsIDw6jpCwqNwrSpI5HNC9u9lmydcXFi+Gm86GwWOPQVyc6TL84ANnlykiIlIwFS8OixaZPQ8vXIBHHzV7HorkIQoORUREJMdExmYcGl7PeZK9hg+H778Hd3f48Ue4tdQZeOQRM+3x7rs1QVlERCSnFS0KCxaYPUOSfmm3eLGzqxJJpuBQREREcoxfSc9sPU+yz8yZMGaM+XjqVHig/iXo0AH27IGbb4affzbLqERERCRneXqavULat4dLl8yfCxc6uyoRQMGhiIiI5KCgQF8CvD2xZXC7DTNdOSjQNzfLKvR++w1eeMF8PHQoPNPNghdfNHsrlShhQsNy5bL1Oe0Oi00HT7Nw2zE2HTytfS1FREQuV6QIzJkDHTtCQoL5Zd68ec6uSgQ3ZxcgIiIiBZeri43gNtXpMysUG6QakpIUJga3qY6rS0bRolwvu8MiJCyKyNg4/EqacNbVxcaBA6aRIelnktGjMa2H06eDiwvMnQu1amVrLUt3hjNy0a5U+10GeHsS3KY6rWoGZOtziYiI5Fvu7mabkCJF4JtvoFMn+Ppr6NzZ2ZVJIWazLCvf/Lo3JiYGb29voqOj8fLycnY5IiIikkkKjnJXRp/vAQ/UYFhPf/btg6AgWLMGii74Frp0MSd9+in06ZPttfSZFZpmsnZSVDy5ax19DYiIiFzObofnn4cZM8wv9aZPh2eecXZVUoBkJV9TcCgiIiK5IqMOOMleGQV12G2cmBtE3D+lueUW+P138D+wHpo3N/spDRgA//tfttZid1g0Gr8qw8naNsDf25P1g5vpa0FERORyDofZRmTKFLDZzJ/PPefsqqSAyEq+pqXKIiIikitcXWw0qFLK2WUUaHaHxchFu9KEhpYFUctrEvdPaVyKJLJgoSv+5w5Cu3YmNGzXDt57L9vrCQmLyjA0BLN0PTw6jpCwKH1tiIiIXM7FBT77zCxb/r//Mx2Ily5l+8oAkWvRcBQRERGRAiKjoC4mpDLn/roFbBalHwslMfEAPPIInD4NdevCrFng6prt9UTGZhwaXs95IiIihYqLC3z8MfTvb66/9BJMmuTUkqTwUXAoIiIiUkCkF8Bd2FeWs2tuB+CmZrvwrnicwN7dYP9+uOUWWLQIihfPkXr8Snpm63kiIiKFjs0GH3wAgwaZ6/37wzvvmH0QRXKBgkMRERGRAuLKAC4+wotTi+4GbJSsc5iSdcIYt/QjSof+Dl5esHgx+PvnWD1Bgb4EeHuS0e6FNszQlqBA3xyrQUREJN+z2WDcOBg2zFwfPhwaNYK//3ZuXVIoKDgUERERKSAuD+oSYzw5Ob8eVqIrnoGR3NR8F/03fsvjf6/GcnWFefOgZs0crcfVxUZwm+oAacLDpOvBbaprMIqIiMi12GwwejR88QWULAmbN8Pdd0NwMMTHO7s6KcAUHIqIiIgUEElBXcLZopyY3QD7OU/cS8dSpu2fPLHrV17bMBsA2+TJ8OCDuVJTq5oBTO5aB3/v1N2Q/t6eTO5ah1Y1A3KlDhERkQLhhRdg1y547DFISIBRo0yAuHGjsyuTAspmWdaVg/fyrKyMixYREREpjPbtg/vut3M60hU3n/OU7byZhme3MGvucNztiTB4sFnulMvsDouQsCgiY+PwK2mWJ6vTUERE5DpZllk90LcvnDhhOhJfegnGjDHbkYhcRVbyNQWHIiIiIgXEzp3QooX5+eGOOyzGTT1D8cidNO7RFrfos9ChA8yZY6Y0ioiISP4XFQVvvAHTppnrN98MkydD69bOrUvytKzka/quUURERKQA+PNPaNLEhIZ33QVr1th4rKqd5gOfNaHhvffCV18pNBQRESlIfH3hyy9h5UqoXBn+/RfatIFOncw3BSI3SN85ioiIiORzv/8OzZrB6dNQty6sXg1+XnHQrh0cOgSVKsFPP0HRos4uVURERHJC8+awYwcMGgSurmaFwR13wIwZZlmzyHVScCgiIiKSj61bZ5Ynnz0LDRuahgNfzwvQtq3ZKN3bG5YsAT8/Z5cqIiIiOalYMRg/HkJCzMCUM2fg2WfNQLRDh5xdneRTCg5FRERE8qmVK6FVKzh3Dpo2haVLwdsWYw4uXw7Fi8PChabj4DrZHRabDp5m4bZjbDp4GrtDXQsiIiJ5Wp06JjwcPx48PeHXX6FmTfjf/yAx0dnV5X2WBVu3ms+XaDiKiIiISH60eDE88QTEx5uc8IcfoOiF0+bK1q2m0/CXX6BBg+t+jqU7wxm5aBfh0XHJxwK8PQluU51WNQOy42WIiIhITjpwAHr1MvuYANxzD0ydCrVrO7WsPGn3bvj2W3M5cMAc27cPqlZ1bl05QMNRRERE8iF1dklm/fADtG9vQsO2bWHBAigaHWGmo2zdCqVLmx8QbjA07DMrNFVoCBARHUefWaEs3Rl+Yy9CREREct6tt5qOwy+/BB8f+OMPsyHykCFw8aKzq3O+w4dh3DioVQuqV4fRo01oWLQoPPmkOjRRx6GIiEieoM4uyazZs+GZZ8Buh6eegq+/Bvfwf8xGh/v3Q0CAWcNcvfp1P4fdYdFo/Ko0oWESG+Dv7cn6wc1wdbFd9/OIiIhILoqIgFdfhe+/N9dvvRWmTDG/eCxMTpyAuXNNZ+GmTSnH3dzMyo3OneGxx6BECefVmMPUcSgiIpKPqLNLMmvaNOja1YSG3bvDN9+A+5EDcP/9JjSsWNFMS7mB0BAgJCwqw9AQwALCo+MICYu6oecRERGRXOTvbwKzBQugXDnTWde0KbzwghmkUpCdOWO6Llu0MK/91VdNaGizmc/BF1+YQHHRIujSpUCHhlml4FBERMSJ7A6LkYt2kV77f9KxkYt2admy8Omn8NxzZr/uF180IaLrnr9NaPjPP3DbbSY0rFLlhp8rMjbj0PB6zhMREZE8pG1b2LUL+vQx16dONb90nDcPHA7n1padzp+H774zr7dsWXj+ebNs2+GAe++FiRPh2DFYtcqEp76+zq44T3JzdgEiIiKFWVY6uxpUKZV7hUme8sEHMHCg+bh/f3PdFvoHtGwJp0/DXXeZKcply2bL8/mV9MzW80RERCSP8fY2v5Xs3NmEZnv3QseOJjxr1Mj8YvL++82EZnd3Z1ebeZcuwdKlJjBcuBAuXEi5rWZN83o7dYLKlZ1XYz6j4FBERMSJ1Nkl1/LOOzB8uPl46FBz3bZxAzzyCMTEQFCQmZ6cjb8lDwr0JcDbk4jouHS7YZP2OAwK1G/mRURE8rX774dt2+Ddd+HDDyEqCn76yVwAihWD+vXhgQfMufXrm2N5id0Oa9aYPQvnz4ezZ1Nuq1w5JSysWdNZFeZrCg5FREScSJ1dkhHLgmHDYMwYc330aHOdlSvNkpsLF8w38T//DCVLZutzu7rYCG5TnT6zQrFBqvAwaRRKcJvqGowiIiJSEHh6mm803n4bQkPN1ifr1sH69SZIXLXKXMAMELnnnpSOxEaNcneJ74ULcOSIuRw+DDt3mrAwIiLlnIAAM0Guc2eoV8/sYyjXTVOVRUREnChpeu21Ors0vbZwsSyzNPnDD831CRP+W6q8aBF06GCW4bRqZb5RzsHf+mvat4iISCHmcMDu3fDbbylh4r//pj2vZs2UIPH+++Hmm6//OWNiTCCYFAxeHhIeOQInT6Z/P19f8z1S586mBlfX66+hEMhKvqbgUERExMmSpipD+p1dk7vWUUhTiDgc8MorMHmyuf7JJ/Dyy8CcOWakcmIitG9vluN4eOR4PXaHRUhYFJGxcfiVNMuTFWKLiIgUQpZlwrukEPG338zeiFeqVCklRHzgATPAzWYz94+KSh0EXhkOXr7MOCNeXlCxonmeSpXMns8PPghFimTjiy3YFByKiIjkM+rsEoAzZ8yAwzlzzPfXU6dCz57Al1+ajcsty4SH06ebpUIiIiIizhQZaZY0J4WJf/6ZdjKznx+UKWPCwXPnrv2YpUqlBIMVK6b+uFIl8PHJ/tdRyCg4FBERyYfU2VW4/fQT9O5ttuhxdYWvvoIuXYBJk8woZTAnfPopuLg4s1QRERGR9MXGwqZNKcubf/8d4uNTn+Pvn34gmHSsRAlnVF6oKDgUERHJZ06ehM2bzfdZYWFmm5akX876+aX++KablBsVJKdPw6uvwuzZ5nq1ajBtGtx3H2YyyltvmRsGDoT339cG3yIiIpJ/xMfDH3+YTsNKleCWW8wwFnGqrORrWuMiIiKSyxISYMcOExImhYUHD2b+/q6uULp02kDxyo/9/Mz3Z1rRmnf98INZmhwZacLg11+HESOgqKcFQ4bCuHHmxBEjzKRDhYYiIiKSn3h4/PfbUMmv9KOEiIhIDouISAkIN2+GLVvg4sW0591xB9SvD9WrQ3S06UKMjDSXpI/PngW7HU6cMJdr8faGZs3goYfMpXLlbH95ch1OnoS+fc1ehmD+zqdPh6AgzL5Ar/YzU1HgspHKIiIiIiK5S8GhiIhINrp0CbZvT91NePhw2vO8vU1IWL8+NGhgAqObbsrc4586lTpMzOjj8HATQP74o7mACQ6TQsSmTbW3tDN8/72ZknzypOkeHTzYNBN6eGAmDb70Usp0lE8/hRdfdHbJIiIiIlJIaY9DERGRG3TuHEycCEuXmi1c4uJS326zQY0aKSFh/fpw++05v0+h3W7qWbECli+HjRshMTHldhcXuPdeePBBEyQGBYG7e87WVJidOGECw/nzzfWaNWHGDLjnnv9O+OEHExqeOGESxenToVs3Z5UrIiIiIgWUhqOIiIjkAsuCefNgwAD499+U4zfdlBISNmgA9eqZDsOrOnYMQkLMJSwMSpUymxSWLZt600I/P/Ng17HXXWwsrF1rQsTly2Hv3tS3e3mZLsSkjsQqVbSlXnawLPjuO7M0+fRps+fk0KFm5kmRIpig8JVXzBcTXDEdRUREREQkeyk4FBERyWF79pis59dfzfVKlUwY9MADcNtt1wjcYmJMK+Dvv6eEhceOZf7J3d1TQsT0gsXLL+XLZ9ja+M8/Kd2IK1eaVbKXq1TJBIgPPgjNm2duKbWkFh5uhp8sXGiu16plugxr18Ykit98A/36mU9+0rrl4cM1bVBEREREcoyCQxERkRxy7hyMHg0ffmimI3t4wJtvmrynaNF07pA0QjkpIPz9d9i924RGl3NxMWtX773XdJxFR5uNCk+cSNm8MDLShI5ZUaaMSf0efNBcKlRI9zS7Hf7804SIK1bAhg2m9CSurtC4MbRvD+3awc03Z62MwsayYNYskwmeOWOy3mHDYMiQ/5aD//sv9O4NS5aYO9SubboM777bmWWLiIiISCGg4FBERCSbWZYZajFgQEpzYOvWZm/DKlUuOyksLHUnYWho2k0PASpWNJsKBgWZsLBOHShe/NqFxMWlDhIvv1wWMlr/XVwu39QQTCiZFCI2aWLWJ6fj3Dn47TdYtsxi4WI7Rw6mnqdWt64JEdu3N9OgJcWxYyYTXLzYXK9Tx3QZ3nkn5mtkyhR44w0TAhcpYiajDBqkDSZFREREJFcoOBQREclGu3ebZcmrVpnrgYEwaRK0afPfCQcOmPBnxQoz8vhK3t4pAWFQkNn00N8/x+pdujOckYt2cSoqlruP76VR2J80+3c7NY7tw+ZwpJzo6mo2Y0wKEoOCzAZ8VzxOeHQcCWeKcWGfP/awAM79441lpazFrlbNdCG2b29eWk4PfcmrLMsEhK+9ZhpGixSB4GCTEbq7AwcPwgsvwOrV5g7168OXX0L16s4sW0REREQKGQWHIiIi2SA2NmVZcmKi2XbuzTdNc1jRov+d8O675oRLl8ydihQxy04v7ya89dZcS9OW7gynz6xQrvzP3QZ4xZ1jRqVz3L13qwk5Dx5MfVLSdJQWLVhXsRbPrI/GumKzRhuQeM6D9qXqcmCLD7/+mvLSAcqVg7ZtTYjYpEnONNHZHRYhYVFExsbhV9KToEBfXF2cN8Xl/HkzUfuzz8xekWD+6qdNM9O0sdvho4/MNJSLF80Xz5gxZlqKq6vT6hYRERGRwknBoYiIyA2wLJgzBwYOhOPHzbE2bcyy5MqVAYfDbGD35ptm+gWYKSJvv23W8Hp4OKVuu8Oi0fhVhEenszQaE/r5e3uyfnAzE7SFhZmka8UKM+Xliukox0qWYX2l2smXM8W80zzO+XM2liyBBQvMdn2xsSn39/GBRx81IWKrVplbiX0tl3dBJgnw9iS4TXVa1Qy48SfIpJgY+PlnmD8ffvnF5IFg/upHjTJL2t3cMO2qPXvC5s3mhKZNzVLl5PXtIiIiIiK5S8GhiIjIddq1yyxLTlpNWrmyaRZ79NH/TtiyBV59NSUIqlLFdBy2bn2NUco5b9PB03Sesvma5337Qn0aVCmV+mDSdJQVK4j+aQmeWzbjYU/ZH9Fuc+GP8rezvGp9VlStz5GbyqV5nPh4s5z7xx/NFOHIyJSH9/Q02Wq7dmbISmBg1j9dV+umBJjctU6OhodRUfDTTyYsXL48dadlYCA88YRZiXzbbZjJMu+9Z1LES5egZEmYMMGc4OSvExEREREp3BQcioiIZFFsrMl4Jk5MWZY8ZIhZluzpCUREmAMzZpg7FC9uxuS+9prTOgyvtHDbMfp9t+2a503qVJu2tctf9XEGf72ZoKN/0+jwNu4//Cd3nDyc6py9pW/B1rYtt/XuBvfck2Yptt1ustUffzSXQ4dSP0fp0imruZO2fSxdOuOas9xNmU0iI0035fz5JhS9fNZMtWomLOzQwaxOT84D//zTdBlu22auP/qoWcesUdQiIiIikgcoOBQREcmk9JYlP/aYCRADAzHdYpMmmc0Ok9bhdusG48aZDf3ykBvqOLzG45SLiaTF/t95aP9m7j26E3eH/bIb/9vYsG1bsxS3SJFU97Us2LnTBIhLlphc7fJuvSRVqqTeGrJ27f/2kszG15YZx46ZWufPN5OlL58nc9ddJix84gkz0yRV82BcnPk6GT/eJKe+vqZdtUsXdRmKiIiISJ6h4FBERCQT/vkHevRIWZZcpYrJeR555L8TliyB/v1h/35zvV49c0L9+k6o9tqSuvIiouPSLOeFzHflXetxvOPO0S58O8GOA7gs/QXOnUu50csLHn7YhIiPPGImSl8hPh62b4eQkJTL3r1pn8fNzQR1QUHgHnCGef/8hXupc1fN4K7VTZmRw4fhhx9g3jzYtCn1bXXrpoSFVaumc+c9e8ydZ8xI+Vrp2BE+/hjKls1yLSIiIiIiOUnBoYiIyDWEhZnmuCNHzFLkt96C11//b1nyvn1mCfKSJebksmVh7Fjo3j3XpiNfr6R9AIFUoV9W9wHM9OMkbWy4cKG5RESknOzubkYrt2tn2jivslT3zBnYutWEiL//bi6X75GY/PxFEvAIiKZIwFncSsZhOWzgsP33pwtP3F2BAK9iJCaSfLHbSXX9ysuRIxAamvp57rvPBIWPPw6VKl1RhGWZZcg//GDaEnfvTrnN3x8+/dRMhBERERERyYMUHIqISIFld1iEhEURGRuHX0lPggJ9s7yn3aFDJjT85x+4JdDO0I9Octcd7gSVcsP13XfM0uSEBBN89esHw4ebTrp8IrsmD2f5cRwOMzxmwQITIl4eqIFp3WvbFu6/3+yLWKJEhs9tWXD06GVBYojFhk0OHAmuma4/K1xczNCWJ54wmV+aVegOh9m08YcfzCUsLOU2d3do0cKkjB07pttlKSIiIiKSVyg4FBGRAik7ArFDh0wT3NGj4Fn6PKWe3IR7iYt02LGSIb99he/5s+bERx4x05Jvuy37X0guyI6A9YYfZ98+EyAuWGDW/17+LYfNZjYJrFcv5XLXXVcdNLN4Wzi9PtpPfLgP8eE+OOLcwMXC9t+l0W2lqFSmGG5uZOri4mrx79nzJLheonlzaFX3ptSvLTHRbHI4f77Z9DA8POW2okWhVSuTND76KPj4ZOnzKiIiIiLiLAoORUSkwElaOnvlf1pZWYJ78KAJDf/9F9x8z1G282bqRW8n+NfPqR1u9qY75FueqNHjqPtS12x/DYXaiROwaBEsXWraCI8eTXtOkSJQq1ZKkBgUZEYXu6Z0GeZ0N+WIllVoGf63CQt/+glOn065k5cXtG5twsKWLc1kbRERERGRfEbBoYiIFChJwzouD3kul5mhHwcOmNDw2DHwLHOe0k9uou+Orxn021cAxBYpykf3dWZm3TaU8i15zQEicoMiIsyy5qRLSAhERaU9r0QJs6z5sjDRXuEWQg6fue5uyitD6KKX4mhyaCut9m2i2cEQSl66mHJyqVJmj8bHH4fmza/aESkiIiIikh9kJV9zy6WaRERErltIWFSGoSGY4R3h0XGEhEXRoEqpNLfv32/2NDx2DAJvTSSh5QYGhU6j76Y5AHxfswXvNe7OyRI3wTUeS7KJvz+0aWMuYJYxh4WlDhP/+MNMbF671lz+41q6NA3q1YPy5VMmnCQkpJ54cvn1yz62EhK4/UQMqxITcHM4cLMn4nsxBg97QvLjn/QqRamuT+HSoYPZj9FN3y6JiIiISOGk74RFRCTPi4zNODS81nn79pnQ8Phxs6XeoEmRxA/9jF5bfgTgnaY9mRr0+HU/p2QTmw0qVzaXp54yx+x2M2Dl8q7Ev/6CU6fgl1+u72mASukc/8e7LL9Ua8jS2+5jW7nbmN3rPgXHIiIiIlLoKTgUEZE8z6+k53Wdt3evCQ3Dw6FGDVi10oHjjbfx/y80HP7gi3xdp/UNPafkIFdXqFnTXJ591hyLizPh4ZYtEB2detqJu/s1r284fJaP1oaR6OKK3cWVBBdXzhcpyuGbypnw8j9ZDY6zaxiNiIiIiEheouBQRETyvKBAXwK8PYmIjkszHAVS9jgMCvRNPrZnjwkNIyLgzjvh1+V2ygx/EWZ9icNm462HXubb2q0y9ViSh3h6mqEpQUHXdXeXg6f5PWzzNc/LSnCcXQNbRERERETyGhdnFyAiInItri42gttUB1KmKCdJuh7cpnpyh9fu3VeEhssSKfNGD5g6FVxc2PnuJL6r3SpTjyUFS1IIndHfrg0T+mU2OE4atHLlHpwR0XH0mRXK0p3hWarP7rDYdPA0C7cdY9PB09gd+WaGnYiIiIgUQAoORUQkX2hVM4DJXevg7526E8zf25PJXeskd3bt2pUSGt51F6xalkCZfl1g1iyz9PXbb7lrSN9MPZYUPFkNoa/G7rAYuWhXul2wScdGLtqV6fBv6c5wGo1fRecpm+n33TY6T9lMo/Grshw+ioiIiIhkF5tlWfnmV9lZGRctIiIF09X2kvv7b2jWDCIjoXZtWLk4nlIvPQULF5r97ubOhXbtMvVYUrBlx/LiTQdP03nKtZc9f/tC/WsOWknqXLzym7Kkr0YF2iIiIiKSXbKSr2mPQxERyVdcXWzphjA7d5rQ8ORJuPtuWPHTRUo99zgsXQoeHvDjj/Dww5l6LCn4WtUM4MHq/jcUHN/ItO/LXatz0YbpXHywur+CbRERERHJVbmyVNnhcPDJJ59Qp04dihUrhpeXFw888AA//fRTbjy9iIgUcDt2pISGderAyoXnKdW9tQkNixWDxYvThIYiScFx29rlaVClVJZDueud9n2lkLCoNHskXs4CwqPjCAmLykp5IiIiIiI3LMeDQ8uyePLJJ+nbty8xMTE899xzdOrUib1799K2bVs++eSTnC5BREQKsL/+SgkN77kHVsyPwbdLK1i1CkqUMOFh8+Y5WoMGWhRO2TVoJbs6F0VEREREsluOL1WeP38+8+fPp2HDhqxYsYKiRYsCMGbMGOrWrcvrr79O69atqVSpUk6XIiIiBcz27SYTPH0a6taFFXPP4PNUKwgJAW9vExrWr5+jNWTHXnmSPyUNWukzKxQbpFpqnJVBK9nVuSgiIiIikt1yvONw4cKFAAwdOjQ5NAQoXbo0r732GvHx8UyfPj2nyxARkQJm27aU0LBePVj53Sl8nmhuQkNfX9NxmAuhYZ9ZoWmWmUZEx9FnVqim4RYCmZ32fTXZ1bkoIiIiIpLdcrzjMCIiAoDAwMA0tyUdW7VqFSNHjszpUkREpID4809o0QKioiAoCJZ/fQLvdi3MhBQ/P1i5Eu68M0dr0EALSXKjg1ayq3NRRERERCS75XjHYenSpQEICwtLc1vSsX379qV73/j4eGJiYlJdRESkcAsPh1atTGh4772wYsYxvB9rbELDgABYuzbHQ0PQQAtJ7UYHrWRH56KIiIiISHbL8Y7Dhx9+mO+++45x48bRrFkzPD3NN8SnT59m4sSJAJw9ezbd+44dO1adiCIiksxuh6efhshIkw0un3IEr9bN4NAhuOUW+PVXuPXWXKlFAy0ku91o56KIiIiISHbL8eCwS5cuzJgxg9WrV3PnnXfSqlUrEhISWLBgAWXLlgXAxSX9xschQ4YwYMCA5OsxMTFUqFAhp0sWEZE86t13YfVqKF4cFkw4gFfr5vDPP1C5stnTsGLFXKtFAy0kJyR1LoqIiIiI5AU5vlTZzc2NX375hREjRuDi4sIXX3zBDz/8QNu2bZk3bx4Afn5+6d7Xw8MDLy+vVBcRESmc1qyBpCb02W/vofKzjU1oeNtt8NtvuRoaggZaiIiIiIhIwZfjwSGYADA4OJi9e/cSHx9PZGQkn3/+OceOHQOgbt26uVGGiIjkU5GR0KULOBzwaqdIHvuoBRw/DjVqmD0Ny5fP9ZqSBloAacJDDbQQEREREZGCIFeCw4x88803AHTq1MmZZYiISB7mcEC3bmYoSs077Hxw4mk4dgyqVTNtiP7+TqtNAy1ERERERKQgy/E9DsHsTXjlMuN58+Yxbdo06tWrx+OPP54bZYiISD40fjwsXw5Fi8KvTUbjOnklFCsG8+dD6dLOLk8DLUREREREpMDKleDw3nvvpUKFCtxxxx14enoSEhLCmjVrqFy5Mt9//z2urq65UYaIiOQz69fD8OHm4x9eXI7fxFHmymefmWXKeYQGWoiIiIiISEGUK8HhU089xQ8//MDmzZtJSEggMDCQYcOG8cYbb2jgiYiIpOv0aejcGex26Nv+X1p+/TRYFvTqZdYui4iIiIiISI6yWZZlObuIzIqJicHb25vo6GgFjiIiBZjDAY89BosXQ/WqCfx1U2NcQzbB3XfDxo3g6XntBxEREREREZE0spKvOXU4ioiISHo+/NCEhh4esObewSY09PaG779XaCgiIiIiIpJLFByKiEiesnkzvPmm+finHj9QZtaH5sqMGVClitPqEhERERERKWwUHIqISJ5x5gx06gSJidD34QM8+O2z5obXX4d27Zxam4iIiIiISGGj4FBERPIEy4KePeHIEageeJEP/+2ALSYGGjWCMWOcXZ6IiIiIiEiho+BQRETyhI8/hgULoEgRWHtXX1x3bIcyZeC778Dd3dnliYiIiIiIFDoKDkVExOm2bjWrkQF+7jiT0gu/BJsNZs+G8uWdW5yIiIiIiEghpeBQREScKjoannoKEhKgX7MdtPihj7lh5Eho0cK5xYmIiIiIiBRiCg5FRMRpLAteeAEOHYKat8Twv386YLt4EVq2hLfecnZ5IiIiIiIihZqCQxERcZrPP4fvvwc3V4s1VV/A9cA+uPlmmDULXPRflIiIiIiIiDPppzIREXGKbdugf3/z8bI2n1Dq17ng5gZz50Lp0s4sTURERERERFBwKCIiThAbC08+CfHxMKDh7zRdPNDcMGECNGjg3OJEREREREQEUHAoIiK5zLLgxRdh/36oGXCa9w53xJaQAE88Aa++6uzyRERERERE5D8KDkVEJFdNmwazZ4Obi4O1FbvheuwoVK1qbrDZnF2eiIiIiIiI/EfBoYiI5JqdO6FvX/PxyhZj8d38C3h6wrx54OXl3OJEREREREQkFQWHIiKSK86fN/saXrwIb9RdzQMr3zY3fPop3HWXc4sTERERERGRNBQciohIrggOht27obbfccYd7oTN4YBnnzUXERERERERyXMUHIqISI7780+YOBFcSWSlX2dcTkWaLsNPPnF2aSIiIiIiIpIBN2cXICIiBZvdDr17mz9/vH0YpXb+BiVLmn0NixVzdnkiIiIiIiKSAXUciohIjvr0U9iyBdoVW067PePNwWnTzCRlERERERERybMUHIqISI7591946y0ozjm+8uxlDr78MnTo4NzCRERERERE5Jq0VFlERHLMq69CbCzM9n+bkhFHoGJFGDfO2WWJiIiIiIhIJqjjUEREcsTChfDjj9DANYROkZPMwc8+gxIlnFuYiIiIiIiIZIqCQxERyXaxsfDKK+DOJeb7Po/N4YCuXaFVK2eXJiIiIiIiIpmkpcoiIpIhu8MiJCyKyNg4/Ep6EhToi6uL7Zr3e/tts7/hBJ/3CDi5A0qXhg8/zIWKRUREREREJLsoOBQRkXQt3RnOyEW7CI+OSz4W4O1JcJvqtKoZkOH9/vgDPvoIqrGH186PNgcnTTLhoYiIiIiIiOQbWqosIiJpLN0ZTp9ZoalCQ4CI6Dj6zApl6c7wdO+XmAi9eoHlcLCgzAu4JFyCRx6Bzp1zo2wRERERERHJRgoORUQkFbvDYuSiXVjp3JZ0bOSiXdgdac/45BMIDYXXin7O7SfXm0EokyeD7drLm0VERERERCRvUXAoIiKphIRFpek0vJwFhEfHERIWler4P//AsGFQnn8Zaw02B8eOhVtuycFqRUREREREJKdoj0MREUklMjbj0DCj8yzLTFE+f95i2U19KHImFho0gD59cqpMERERERERyWHqOBQRkVT8Snpm+bwff4RFi6CL61wanvkZ3N1h6lRwdc2pMkVERERERCSHKTgUEZFUggJ9CfD2JKNdCW2Y6cpBgb4AxMRA377gy2k+9+hrTnrrLahePVfqFRERERERkZyh4FBERFJxdbER3MaEfleGh0nXg9tUx9XFXBs2DI4fhyklB1LiwkmoUQOGDMm9gkVERERERCRHKDgUEZE0WtUMYHLXOvh7p1627O/tyeSudWhVMwCAkBAzSbkFK3g8dqaZnjxlChQp4oyyRUREREREJBtpOIqIiKSrVc0AHqzuT0hYFJGxcfiVNMuTkzoNExOhVy8oap1ndvFecB6zZrlBA+cWLiIiIiIiItlCwaGIiGTI1cVGgyql0r1t4kTYvh0+8XybMucPwy23wLvv5mp9IiIiIiIiknO0VFlERLLs8GEIDoa6bKFP/ERz8LPPoEQJZ5YlIiIiIiIi2UjBoYiIZIllwcsvw6ULCXxX/DlcLAc8/TQ8/LCzSxMREREREZFspOBQRESyZN48WLIEhri8R5XzO6B0abNuWURERERERAoUBYciIpJp0dHw6qtQjT28bRtlDk6caMJDERERERERKVA0HEVERDJtyBA4EeFgUdEXcLt4ySxP7tLF2WWJiIiIiIhIDlDHoYiIZMqmTWb+SS++oO7F9VC8OEyeDDabs0sTERERERGRHKDgUERErikhAXr1gnLWv3zoPsgcHDsWKlZ0bmEiIiIiIiKSY7RUWURErumDD2DnTotf3F+iaEIs1K8PL73k7LJEREREREQkB6njUERErurQIRg5EjryPa0SFoG7O0ydCq6uzi5NREREREREcpCCQxERuaq+fcHzYhSfufc1B4YOhRo1nFuUiIiIiIiI5DgtVRYRkQwtXgxLlsAM20B8EyKhenUzWllEREREREQKPHUciohIuuLj4bXXoDkr6W7NMNOTp04FDw9nlyYiIiIiIiK5QB2HIiKSrkmT4Mj+eJa69gE78Mor0KCBs8sSERERERGRXKKOQxERSSM8HEaPhteZQGX7AQgIgHfecXZZIiIiIiIikosUHIqISBpDhoDvuSMMd3nXHJgwAby8nFuUiIiIiIiI5CotVRYRkVR+/x1mzoR5DMDTcREaN4bOnZ1dloiIiIiIiOQydRyKiEgyhwP69oUHWc4T/ACurvDJJ2YwioiIiIiIiBQq6jgUEZFkX30F27fEs9PWFyxMilizprPLEhERERERESdQx6GIiAAQEwNvvgmv8SFVrX1QtiyMGOHsskRERERERMRJFByKiAhghia7nzjK27bR5sCECeDt7dyiRERERERExGm0VFlERNi3DyZOhG8YQDHrAtx/Pzz9tLPLEhERERERESdSx6GIiPDaa/BAwko6Mk8DUURERERERARQx6GISKG3ZAmsWHKJv3jFHHj5Zbjrrmx/HrvDIiQsisjYOPxKehIU6Iuri8JJERERERGRvErBoYhIIXbpEvTvD/2ZyO3sBT8/GDky259n6c5wRi7aRXh0XPKxAG9PgttUp1XNgGx/PhEREREREblxWqosIlKITZoEF/b/S7BtlDnw3nvg45Otz7F0Zzh9ZoWmCg0BIqLj6DMrlKU7w7P1+URERERERCR7KDgUESmkIiJg9GiYwOsUt87DffdBt27Z+hx2h8XIRbuw0rkt6djIRbuwO9I7Q0RERERERJxJwaGISCE1ZAjcE7uaTszBcnGB//s/cMne/xZCwqLSdBpezgLCo+MICYvK1ucVERERERGRG6c9DkVECqGQEJg1I4Ft/w1EsfXpA7VrZ/vzRMZmHBpez3kiIiIiIiKSe9RxKCJSyDgc0LcvvMpH1GAXlClj1iznAL+Sntl6noiIiIiIiOQeBYciIoXM11/D0ZDjjGCEOTBuHNx0U448V1CgLwHentgyuN2Gma4cFOibI88vIiIiIiIi10/BoYhIIRIbC2++Ce/zBiU5B/feCz165NjzubrYCG5THSBNeJh0PbhNdVxdMooWRURERERExFkUHIqIFCLvvAO3RazlaWZj2Ww5MhDlSq1qBjC5ax38vVMvR/b39mRy1zq0qhmQo88vIiIiIiIi1ydXhqNYlsWPP/7Ixx9/zJ49e4iOjqZChQo0adKEwYMHU7ly5dwoQ0SkUNu/Hz7+IIHfkwai9O4N99yTK8/dqmYAD1b3JyQsisjYOPxKmuXJ6jQUERERERHJu2yWZVk5/SQDBw7kgw8+ICAggLZt2+Ll5cX27dtZvnw5JUqUYOPGjdSsWfOajxMTE4O3tzfR0dF4eXnldNkiIgVK69Zw6+KJTOQ1rFKlsO3bB77aW1BERERERKQwyUq+luMdhxEREUycOJGKFSuyfft2vL29k2/78MMPGTBgAB988AHTpk3L6VJERAqtX36BrYsj+IZgAGxjxyo0FBERERERkavK8T0ODx8+jMPhoGHDhqlCQ4DWrVsDcPLkyZwuQ0Sk0Lp0Cfr3h/cYhDcxUK8ePPecs8sSERERERGRPC7Hg8OqVatSpEgRNmzYQExMTKrbfv75ZwCaN2+e02WIiBRaH38MZfat5xm+zrWBKCIiIiIiIpL/5fhS5VKlSjFu3DgGDhzI7bffnmqPw1WrVvHSSy/xyiuvpHvf+Ph44uPjk69fGTyKiMjVRUTAOyMSWcPLANheeMF0HIqIiIiIiIhcQ65MVX7ttdcoX748zz//PJ999lny8UaNGtGlSxfc3NIvY+zYsYwcOTI3ShQRKZCGDoVu5z6lFn9h+fpiGzPG2SWJiIiIiIhIPpEra9VGjRpF165dGTp0KEePHiU2NpZ169YRFxdHkyZN+Omnn9K935AhQ4iOjk6+HD16NDfKFREpELZsgcXTTzCa4QAmNCxVyslViYiIiIiISH5hsyzLysknWLlyJQ8++CCvvfYaH3zwQarbIiIiqFy5MuXLl2f//v3XfKysjIsWESnMHA5o2BB6b+5BD2bCPffA77+Dq6uzSxMREREREREnykq+luMdh7/88gsATZs2TXObv78/t99+OwcOHODcuXM5XYqISKHx9ddg27zRhIZgBqIoNBQREREREZEsyPE9Di9dugTAyZMn07395MmTuLi44O7untOliIgUCtHR8OYbdpb8NxCF556De+91blEiIiIiIiKS7+R4x2HDhg0B+OCDD4iOjk5122effca///5LgwYN8PDwyOlSREQKhREj4ImTk7mbbVg+PjB2rLNLEhERERERkXwox/c4tNvtNGvWjN9++w0/Pz8ee+wxfHx8CA0NZdWqVRQtWpQ1a9YQFBR0zcfSHociIle3cye0rBXBLkc1vImByZPhxRedXZaIiIiIiIjkEVnJ13I8OASIj4/nww8/ZO7cuezdu5dLly5RtmxZmjZtytChQ7njjjsy9TgKDkVEMmZZ0Lw59Fzdla58A/XqwaZN2ttQREREREREkuW54DC7KDgUEcnY3Lkw+anVrKYZls2GbcsWM01ZRERERERE5D9ZyddyfDiKiIhkjt1hERIWRWRsHH4lPQkK9MXVxZap+547B28OuMRiXgLA1qePQkMRERERERG5IQoORUTygKU7wxm5aBfh0XHJxwK8PQluU51WNQOuef8xY+DJYx9wB3uw/PywvfNOTpYrIiIiIiIihUCOT1UWEZGrW7oznD6zQlOFhgAR0XH0mRXK0p3hV73//v0w9/0jDGc0ALYJE+Cmm3KsXhERERERESkcFByKiDiR3WExctEu0ttsNunYyEW7sDvS347WsqBfP3g/sT/FuYD1wAPQtSt2h8Wmg6dZuO0Ymw6ezvD+IiIiIiIiIhnRUmUREScKCYtK02l4OQsIj44jJCyKBlVKpbn955/B5Zefac8CLDc3bJ9+ytK/I25o2bOIiIiIiIgIqONQRMSpImMzDg2vdV5cHAzue4GP6QuA7bXXWGr53tCyZxEREREREZEkCg5FRJzIr6TndZ/3/vvQ+chYAjmMo/zN2IcNv6FlzyIiIiIiIiKXU3AoIuJEQYG+BHh7YsvgdhtmmXFQoG+q40eOwNx39jGI9wBw+WgSIScvZXrZs4iIiIiIiMi1KDgUEXEiVxcbwW2qA6QJD5OuB7epjqtL6lsHDrD44NLLeHAJ6+GHoX37G1r2LCIiIiIiInIlBYciIk7WqmYAk7vWwd879XJkf29PJnetk2agyYoV4PLD9zzIShxFPLB9/DHYbDe07FlERERERETkSpqqLCKSB7SqGcCD1f0JCYsiMjYOv5JmefKVnYaXLsGQl2P4if4AuAwdAlWqACnLniOi49Ld59CGCSOvXPYsIiIiIiIikh4FhyIieYSri40GVUpd9ZyPPoIu+0dQjnDsgVVwHTw41f2D21Snz6xQbJAqPLzasmcRERERERGR9GipsohIPnH8OMx/ezuv8hEArp9+Ap6plx1nddmziIiIiIiISEbUcSgikk8MfsPBhIsv4YYd64kO2Fq1Sve8zC57FhEREREREbkaBYciIvnAunXgNnsmDdmIvWhxXCd+eNXzM7PsWURERERERORqFByKiORxiYnw1oun+YE3AHAdPRJuvtnJVYmIiIiIiEhBpz0ORUTyuM8/h6d3DaU0p0m8vQa8+qqzSxIREREREZFCQB2HIiJ52MmTsODNzSxjCgBuX0wGd3cnVyUiIiIiIiKFgToORUTysGFvJjL+3Eu4YOF4pjvcf7+zSxIREREREZFCQsGhiEgetWULeEybTB3+JLGEDy7vv+fskkRERERERKQQ0VJlEZE8yOGAt3tF8B3DAHB7fyz4+Tm5KhERERERESlM1HEoIpIHzZgBT297HW9iuFSrLrzwgrNLEhERERERkUJGHYciInnMmTOwaMBqfuQbLJuNIlMng6urs8sSERERERGRQkYdhyIiecyoYZcYE/0SAI7efaBuXSdXJCIiIiIiIoWRgkMRkTzkr7+g6OQPuIM9xPv44TrmHWeXJCIiIiIiIoWUliqLiOQRiYkw/JkjfGuNAsDjowlw001OrkpEREREREQKK3UciojkERM/tOizvTfFuEj8vQ9A167OLklEREREREQKMQWHIiJ5wL59EDZ0Cq1YRqKbBx7TPwObzdlliYiIiIiISCGmpcoiIk7mcMDQLoeZnjgQgP9v797jtJwTPo5/7plqJjVzdzYjqZEcksO2KmcSlUPOhC2KJYUHOaSoKRFWeBzDolSsZVsph1jHsDRRrITSlqKp1NTMdJipZu7nj+spxkwpZu5rDp/36zWvrtM9873tXt2v+fb7Xb/EO0fBfvuFnEqSJEmSVNM54lCSQvbQA8Vc8WlfUlhLQYcjiVxzddiRJEmSJEmyOJSkMP33v7D4xofozLtsqrMLyX8bB4mJYceSJEmSJMmpypIUluJiGH7BPB7ddBMAiffeDa1bh5xKkiRJkqSAIw4lKSRPPFbE5TP6sAsbWH94FxL6Xx52JEmSJEmStrI4lKQQLF4Mi6+9l8P5iMKkFHb521OQ4F/JkiRJkqTKw6nKkhRnsRjcdv6XPFh4CwC1H/pf2GOPcENJkiRJkvQLDm+RpDh7+olNXPbvi0hiI2uPPomES/qGHUmSJEmSpFIsDiUpjn74AX646k4O4VM21G1I/b/9FSKRsGNJkiRJklSKU5UlKU5iMfjL+bMZXXgrAHUefRB22y3kVJIkSZIklc0Rh5IUJ889Xcgl719EbTaTe/yZJPa+IOxIkiRJkiRtk8WhJMXB8uWQ3f9WDuQL1u3ShOgzY5yiLEmSJEmq1CwOJSkO/vf8GVxdcCcASU89Cs2ahZxIkiRJkqTtsziUpAr2z2c2cNE7F5FIMTknXkCtnmeFHUmSJEmSpF9lcShJFWjlSlh+6S3syzfk1U+n0cQHw44kSZIkSdIOsTiUpAr0yPnv02/DfQDUnfBXaNQo5ESSJEmSJO0Yi0NJqiCv/H0tf3qzDwnE+LHHxdQ+/eSwI0mSJEmStMMsDiWpAqxeDT9ePIjW/Jc1KS1oOuHesCNJkiRJkrRTLA4lqQL89by36LP+EQDq/u0piEZDTiRJkiRJ0s6xOJSkcvbmpFx6vnExANmn9yfp5ONDTiRJkiRJ0s6zOJSkcpSXBysvHEhLFrMyuifpE/4SdiRJkiRJkn4Ti0NJKkfje77CeeufopgI9Z4fB/Xrhx1JkiRJkqTfxOJQksrJ9Mk5nDntUgB+OPsa6nY9KuREkiRJkiT9dhaHklQO1q6F1b2uYjeyWdZgH1qMvz3sSJIkSZIk/S4Wh5JUDp4795+ctu5ZikggZdLTULdu2JEkSZIkSfpdLA4l6Xd65cH/cvprlwHwXc9B1DuuU8iJJEmSJEn6/SwOJel3+OLDPDKuPpUmrGJJ2iHs+XRm2JEkSZIkSSoXFoeS9ButWlHEihP+RNvYl6xM2o3dsl6CpKSwY0mSJEmSVC5qhR1AksJSVBwja2EOK/ILaJaSTMeMRiQmRHbotZs3w5sdh9Bzw8sURJKp/fJkElvsVsGJJUmSJEmKH4tDSTXStDnZjJg6l+zcgq3H0qPJZPZoS/d26b/6+hd6jOf87/4CwIo7x7LH8R0qLKskSZIkSWFwqrKkGmfanGz6T5xVojQEWJZbQP+Js5g2J3u7r39jxEecOe1SAL466xb2uPG8CssqSZIkSVJYLA4l1ShFxTFGTJ1LrIxzW46NmDqXouKyroAvXlnMQcNPJ4mNfLn3Gez3/IgKyypJkiRJUpgsDiXVKFkLc0qNNPy5GJCdW0DWwpxS535cuJaEM05lV1awIOUg9s0aDwn+NSpJkiRJqp78jVdSjbIif9ul4fau21RYzFedLmL/TZ+zMrEZTT54icRo/YqIKEmSJElSpWBxKKlGaZaS/Juue/vo4Rz94z8ppA75T79I9MCWFRFPkiRJkqRKw+JQUo3SMaMR6dFkIts4HyFYXbljRqOtx6Zf8Xe6ZY0EYM6Vj5Hxp8MrPqgkSZIkSSGzOJQUF0XFMT5asIqXPvuBjxas2ubiIxUtMSFCZo+2AKXKwy37mT3akpgQ7M0d/wkdHukDwIeHXc8fH+xT6ntWlvcmSZIkSVJ5isRisSrzG25eXh7RaJTc3FxSU1PDjiNpB02bk82IqXNLLEqSHk0ms0dburdLr7SZfvx8KUXtO5BWvJSZzU7ij99PIaF24k5/H0mSJEmSKoud6dcsDiVVqGlzsuk/cRa//Itmy+i+Mb3ah1awFRXHyFqYw4r8ApqlBNOTt4w03Ji7gQW7H8N+a2cyv05bmn37EdEWJf/eqczvTZIkSZKksuxMv1bhU5XHjRtHJBLZ7leXLl0qOoakEBQVxxgxdW6pYg3YemzE1LmhTls+rHVjTju4OYe1bry1NCQW4z8dLmG/tTPJiTQi8eUppUrDyv7eJEmSJEn6vWpV9A84+OCDyczMLPPcP/7xD7788ku6detW0TEkhSBrYU6JKby/FAOycwvIWpjDYa0bxy/Yr/jk7Ds4ZP7f2EQtvh75Dw4/oXWpa6rqe5MkSZIkaUfFpTg8+OCDSx3fuHEjDz30ELVq1eKiiy6q6BiSQrAif9vF2m+5Lh7m3fUih/zzZgDe6PEQJ9/cuczrquJ7kyRJkiRpZ4S2qvLkyZNZtWoVp5xyCrvuumtYMSRVoGYpyeV6XUX78c3PaT64NwCv7nklJ07ut81rq9p7kyRJkiRpZ4VWHD7xxBMA/PnPfw4rgqQK1jGjEenR5K2LhfxShGAF4o4ZjeIZq0wbv19B0cmnUi+2jn/XO56jPrmPhO38DVmV3pskSZIkSb9FKMXhd999x1tvvcXuu+9O9+7dt3ldYWEheXl5Jb4kVR2JCREye7QFKFWwbdnP7NH2p0VJwlJYyOIOZ5K2cTHfJrRh13efJ6Xh9p/kUGXemyRJkiRJv1EoxeHYsWMpLi6mT58+JCYmbvO6O+64g2g0uvWrRYsWcUwpqTx0b5fOmF7tSYuWnLKbFk1mTK/2dG+XHlKy/xeL8fVx/dlr2YesIcrSMVNofUjDHXpppX9vkiRJkiT9DpFYLBaL5w8sLi4mIyODJUuWsGDBAjIyMrZ5bWFhIYWFhVv38/LyaNGiBbm5uaSmpsYjrqRyUlQcI2thDivyC2iWEkzhrQyj8RZedS8ZD11HEQm80OdVzhu786u8V9b3JkmSJEnSL+Xl5RGNRneoX6vwVZV/6c0332Tx4sV06dJlu6UhQFJSEklJSXFKJqkiJSZEOKx147BjlPDj3ePY46EbABh/0L30eWrnS0OonO9NkiRJkqTfK+5TlV0URVLoYjGWXzmSpjf2JZFinm/Yj3Pe/x8iDhKUJEmSJGmruI44XLVqFS+99BKNGjXijDPOiOePlqTApk0sO3MAaS8H/4jxRJObOGn27dRPsTWUJEmSJOnn4locTpgwgY0bN9KrVy+nIEuKv7VrWXHsuaR9+hpFJPC/ez7IxZ8MoOGOrYUiSZIkSVKNEtfi8MknnwScpiwpBMuWserQk2n23SzWU5fRhzzH9e+dyi67hB1MkiRJkqTKKW7FYVZWFnPmzKFjx44ccMAB8fqxkqqZ37SC8TffkHtYdxqvXsSPNOGRE19myEudqF07PpklSZIkSaqK4lYcduzYkVgsFq8fJ6kamjYnmxFT55KdW7D1WHo0mcwebeneLr3M18Q++JD1J5xKtCCHb2nNCxdPY+hf9yIh7ktDSZIkSZJUtfirs6QqYdqcbPpPnFWiNARYlltA/4mzmDYnu9Rrip6fxOZju1CvIIcZdOS1oR8x+ElLQ0mSJEmSdoS/Pkuq9IqKY4yYOpeyxixvOTZi6lyKin+6YuM9DxDpeQ61iwqZwql8/cg7XHVr07jklSRJkiSpOrA4lFTpZS3MKTXS8OdiQHZuAVkLc6C4mMIrr6PO9VeTQIzHEvoTm/RPLurvKiiSJEmSJO2MuK6qLEm/xYr8bZeGP7dy5Ro2DBxA3SnPA5CZdCddXr+Ro4/5lcVTJEmSJElSKRaHkiq9ZinJv3pNdEM+h17am7pffMRGanNN6lj6Tf8TBx0Uh4CSJEmSJFVDFoeSKr2OGY1IjyazLLegzOcc7p67gqf/fitNVy8il1SuSH+REe8fR+vWcY8qSZIkSVK14TMOJVV6iQkRMnu0BeCXk473X76ASeNuoPXqRSxhdy7Z+wNGz7I0lCRJkiTp97I4lFQldG+Xzphe7UmL/jRt+aiFs3h+4mB2LVjFfziAazt9xJNZB5CWFmJQSZIkSZKqCacqS6oyurdL54S2aWQtzCHpmfEc9I9bSSzezFscx5Mn/ZOJk6Ik//rjECVJkiRJ0g6wOJRUpSTmruHQB0YSeeB+ACbQi/cvepLxT9Shln+jSZIkSZJUbvw1W6qGiopjZC3MYUV+Ac1SkumY0YjEhF8+HbCK2bQJxoyhePgIElbnAHA7Q1g76DYeuyNCpIq/PUmSJEmSKhuLQ6mamTYnmxFT55KdW7D1WHo0mcwebeneLj3EZL9RLAZTphC74QYi8+eTAMxhf67jHrrd042bB4YdUJIkSZKk6snFUaRqZNqcbPpPnFWiNARYlltA/4mzmDYnO6Rkv9Gnn0LnznD66UTmz2c5zbiMx+h78GcM+6AbAy0NJUmSJEmqMBaHUjVRVBxjxNS5xMo4t+XYiKlzKSou64pK5vvv4cIL4ZBD4L332EAytzOETo2+5ZDHLuPjT2pxxBFhh5QkSZIkqXqzOJQqkaLiGB8tWMVLn/3ARwtW7VTJl7Uwp9RIw5+LAdm5BWQtzCmHpBUkPx+GDiW2994wYQIQLH6yX+Qbll15O7Pmp3DZZZCYGHJOSZIkSZJqAJ9xKFUSv/fZhCvyt10a/pbr4qqoCJ56itjQoUSWLycCTOcoruMe6h3TgSkPwIEHhh1SkiRJkqSaxRGHUiVQHs8mbJaSvEM/a0evi5s33oCDD4bLLiOyfDnz2Ysz+Cd/av4e1z/XgXfesTSUJEmSJCkMFodSyMrr2YQdMxqRHk0mso3zEYIRjB0zGv2OtOXoyy/hxBOhWzeYM4ccGnIN99G+zpe0u+UMvv4mQs+eENnWG5IkSZIkSRXK4lAKWXk9mzAxIUJmj7YApcrDLfuZPdqSmBByE7d8OfTrR+zAA2HaNDZSm3u5lr34lkWnXcPnX9Vh5EioVy/cmJIkSZIk1XQWh1LIyvPZhN3bpTOmV3vSoiWnI6dFkxnTq/0OPSuxQsRiMGcOZGbCXnvB448TKS5mEmfSlrk8vs+9PPtaIyZPhj33DCeiJEmSJEkqycVRpJCV97MJu7dL54S2aWQtzGFFfgHNUoLpyXEfaVhQAO+9By+/HHwtWrT11EwOYSD38ln9o8jMhP/5H6hTJ77xJEmSJEnS9lkcSiHb8mzCZbkFZT7nMEIwYnBnnk2YmBDhsNaNyy3jDsvOhldfDYrCf/0L1q3bempjQhJv0YWni3vzPOfS+8IEnr8T0kMaBClJkiRJkrbP4lAK2ZZnE/afOIsIlCgPK9WzCcsSi8Hs2TB1alAWfvJJidMrk3bjxY2nMCV2Cm8XH8d66nHIIfDhA3DYYSFlliRJkiRJO8TiUKoEtjybcMTUuSUWSkmLJpPZo214zyYsy7p18NZbQVH4yiuwdGmJ03Prd+Dva09hKqcwu/APQIQDDoAbzoSzzoJ27VwpWZIkSZKkqsDiUKokKs2zCX8pFoPFi4MpyFOnwttvQ2Hh1tMb69Tjg126MnHNKbzKSSxfmwZAx45w55lw5pnQpk1Y4SVJkiRJ0m9lcShVIqE9mzAWg1Wr4NtvYf78n/7csr1mTYnLV0db8WrCKTy9ugfvbTyGjRuTSEiAo46CIWfCGWdAixbxfxuSJEmSJKn8WBxKNcmqVWUXg/PnlyoHfy6WkMDC9MN5YcMpjM85hbm5bYEItWtDly7BqMLTToNmzeL2TiRJkiRJUgWzOJSqk6Ki4JmDixbBwoWwYEHJUYSrV2/35Rt33Z2cxm1YUmcv5m5qQ1bOXry/rA3zi1tT8ENdAJKT4fTuwfMKTzkFGjSo+LclSZIkSZLiz+JQqkqKi2HZsp+KwUWLSm4vXgybNm3/WzTfnXXpe7Gsfhu+jbThs7VBOTj9+z1Zt3wXWF76NQ0bwhn/XxZ27w716lXAe5MkSZIkSZWKxaFU2axcGYwU/HkhuOXP774rsTBJmWrVgpYtKWrRipwGGSxOasPcjW2YkdOGdxfvydxFuxD7oeyXNmwI++8ffLVtG3ztvz+kpbkSsiRJkiRJNY3FoRS2lSvh3XfhnXeCr6++2v71CQnByiMZGRTv0Yo1DTNYktiKbzZm8NmaVsz8YTe+mpfID+9u+1s0bly6HGzbFnbd1YJQkiRJkiQFLA6leFuzBqZPh7ffDorC//yn9DW77w6tWkFGBrGWrchvksF3kVbM3ZDBZz8256tvazNvHnz74fZnJjdp8lMp+PM/mza1IJQkSZIkSdtncShVtPx8+OCDoCR8+22YPTt4VuHPtWsHnTuTf0hn3o0dw+dLGjFvHnzzDcybut0Fj0lOhjZtYO+9YZ99Sv7ZqFGFvjNJkiRJklSNWRxK5W3DBvj3v38aUThzJmzeXPKavfeG446j+JjOfNbgWF7Oasa0aTDj4dKdIgSjA/fYo3QxuM8+wazlhIT4vDVJkiRJklRzWBxK5eGbb+C554Ky8OOPYePGkuczMqBzZzjuOFa2O5bX/tOcadPgjauCRxz+XNu20KFDyYJwr72gbt34vR1JkiRJkiSLQ+n3WLAAbr0VJk4sOVSweXM47jjo3JnNR3VmxvJWTJsGr90Hn35a8lukpsLxx8OJJ0K3bsEIQkmSJEmSpLBZHEq/xeLFMHIkjBv30zTkk06C006Dzp35oe5evP5GhGmvwb8Gln5G4R/+AN27B2XhoYdC7drxfgOSJEmSJEnbZ3Eo7YylS2HUKPjrX3+ajnziiWwedisfFBzCa6/BtIdLL5TcqBF07RqUhV27Qnp6/KNLkiRJkiTtDItDaUesWAF33gljxkBBQXDsuOOI3TqSSdmHM+RCmD//p8sjkeA5hSeeGJSFHTpAYmI40SVJkiRJkn4Li0Npe1atgtGj4YEHYP364NgRR8DIkXxQuzM3XB+shQLBqMKTTw7KwhNOgCZNwotdXoqKY2QtzGFFfgHNUpLpmNGIxIRI2LEkSZIkSVIcWBxKZVmzBu67L/jKzw+OdegAI0fy9R5duWlwhJdeCg7vsgvccANcdx2kpISWuNxNm5PNiKlzyc4t2HosPZpMZo+2dG/nXGtJkiRJkqq7hLADSJXK2rXBMwwzMoLVkvPz4aCDYMoUsifP4PIXu9HugKA0TEyEfv3g229h+PDqVxr2nzirRGkIsCy3gP4TZzFtTnZIySRJkiRJUrxYHEoQTEMePTooDG++ORhx2LYtvPAC+e/NIvOTHuzVJsJjj0FRUbB48hdfwKOPVr+FToqKY4yYOpdYGee2HBsxdS5FxWVdIUmSJEmSqguLQ9VsBQXB8wtbtw7mG69cCW3awDPPsOnT/zDmx7PZa+8Ebr016BYPPRTefx8mT4b99gs7fMXIWphTaqThz8WA7NwCshbmxC+UJEmSJEmKO59xqJrr88/h9NNh0aJgv1UrGDaMWK/eTH65FjcdBPPmBaf22itYVPnMM4MVk6uzFfnbLg1/y3WSJEmSJKlqcsShaqZXX4UjjwxKw+bNgznH33zDh3v35chja3HmmUFp2LQpPPQQzJ0LZ51V/UtDgGYpyeV6nSRJkiRJqpoccaiaZ8wYuPJKKC6G446DSZP4ZnkDBp8HL74YXLLLLjBwYDB7OTU13Ljx1jGjEenRZJblFpT5nMMIkBZNpmNGo3hHkyRJkiRJceSIQ1UpRcUxPlqwipc++4GPFqzauQU6iorguutgwICgNOzTh+XjXmPAkAbsv39QGiYkwKWXwvz5MHJkzSsNARITImT2aAsEJeHPbdnP7NGWxIQaMPxSkiRJkqQazBGHqjKmzclmxNS5JRbuSI8mk9mjLd3b/crSxuvXQ69ePw0pvP123u40mDMPiJCbGxzq0SN4jmHbthX0BqqQ7u3SGdOrfan/3mk7+t9bkiRJkiRVeZFYLLYTQ7bClZeXRzQaJTc3l9SaOBSsBps2J5v+E2eVmjq7ZczbmF7tt11mLVsGp54KM2dCnTowbhzPJ55P796wcSO0bw/33gvHHFOR76BqKiqOkbUwhxX5BTRLCaYnO9JQkiRJkqSqa2f6NUccqtIrKo4xYurcMp+3FyMoD0dMncsJbdNKl1pffgknnQSLF0PjxjB5Mg/OPpKrr4ZYDM4+GyZMgGTX+ShTYkKEw1o3DjuGJEmSJEkKgc84VKWXtTCnxHTZX4oB2bkFZC3MKXnizTfh8MOD0rBNG2L//oghrx7J//xPUBpecQU895yloSRJkiRJUlkccahKb0X+tkvDbV735JNw+eWweTMcdRSbX3iRywY3ZuzY4PRtt8Ggm2JkLfr903CdzitJkiRJkqoji0NVes1SdmxIYLOU5GC15FtugTvuCA5ecAHrH3qKc3sn8corwarJjz8OzTtlc9RffuNCKz/zuxZskSRJkiRJqsScqqxKr2NGI9KjyWxrDF+EoKzrmL4LXHDBT6XhsGGsun8iXU4KSsPk5GBR5eadgoVWfjn9eVluAf0nzmLanOwdyrVlwZbf+30kSZIkSZIqI4tDVXqJCREye7QFKFUebtm/7YhdSTzhePj736F2bRg3jsWXjODIoyJ8/DE0bBg88vDkU7a/0AoEC60UFW9/sfFfW7BlR7+PJEmSJElSZWVxqCqhe7t0xvRqT1q05LTltGgy449IpUvf0+Df/4YGDeD11/mi/UUcdhh8/TXsvjt88AEcccTvWGjlF8rr+0iSJEmSJFVWPuNQVUb3dumc0Dat5EIki78g8azTYPVqyMiAV15h+o/7cepRkJsLbdvC668H5SH8xoVWfsP5nb1OkiRJkiSpsrE4VJWSmBDhsNaNg50JE+CSS2DTJjj0UHjpJV78sBnnnw+FhcEIwylToFGjn16/Uwut/I7zO3udJEmSJElSZeNUZVU9sRgMHw4XXhiUhmefDW+/zWMvNuPss4PS8NRT4V//Klkawk4stJLRaBtXlO/3kSRJkiRJqqwsDlX1DBoEI0Zs3Y4993eG31WXyy+H4mK49FKYNAnq1i390h1ZaCWzR1sSE7ZVCZbv95EkSZIkSaqsLA5VtTz7LNx9d7A9ZgxFt9/J5QMStvaIw4bBY49Bre1Mwt/eQitjerWne7v0HYpSXt9HkiRJkiSpMorEYrFY2CF2VF5eHtFolNzcXFJTU8OOo3ibPRsOPxwKCmDwYDYMHcUFF8DkyRCJwMMPQ//+O/7tiopjJRdayWj0m0YIltf3kSRJkiRJqmg706+5OIqqhpUr4YwzgtLwxBNZPXAkp3WD99+HpKRgIOKZZ+7ctyyx0MrvUF7fR5IkSZIkqTKxOFTlt3kz9OwJ330HrVuTPfoZunZOZM4cSE0NVk4+5piwQ0qSJEmSJFUvFoeq/G68Ed5+G+rVY+MLL3HqRQ2ZMwfS02HaNDjwwLADSpIkSZIkVT8Wh6rcJk6E++4LtseP5+rH9+eTT6BRI/jgA9hzz3DjSZIkSZIkVVdxXVX5xRdf5IQTTqBx48YkJyeTkZHB+eefz5IlS+IZQ1XFrFlw6aXB9s03M2HdmTz6aLAQyjPPWBpKkiRJkiRVpLiMOIzFYlx++eU8/vjjtG7dmvPOO4+UlBSWLl3Ke++9x3fffUeLFi3iEUVVxY8//rQYykkn8cXZI+h3eHBq6FDo3j3ceJIkSZIkSdVdXIrDBx54gMcff5wBAwbwwAMPkJiYWOL85s2b4xFDVcWmTXDuubB4MbRpQ96YZzjr+EQ2bICuXWHYsLADSpIkSZIkVX+RWCwWq8gfsGHDBpo3b07Dhg355ptvqFXrt3eVeXl5RKNRcnNzSU1NLceUqmhFxTGyFuawIr+AZinJdMxoRGJCpOyLr7kG7r8f6tcn9vEMzh7Wln/+E1q0CGYvN2kS1+iSJEmSJEnVxs70axU+4vCNN95g9erV9O3bl6KiIqZMmcK8efNo0KABxx9/PHvttVdFR1DIps3JZsTUuWTnFmw9lh5NJrNHW7q3Sy958fjxQWkIMGEC970elIa1a8MLL1gaSpIkSZIkxUuFF4effvopAImJiRx44IHMmzdv67mEhASuvfZaRo8eXeZrCwsLKSws3Lqfl5dXsWFV7qbNyab/xFn8cljrstwC+k+cxZhe7X8qDz/5BC67LNgeOpT3G5/OjWcHu/fdB506xS22JEmSJElSjVfhqyqvWLECgHvvvZdoNEpWVhb5+flMnz6dvffem3vuuYcxY8aU+do77riDaDS69csFVKqWouIYI6bOLVUaAluPjZg6l6LiGKxYESyGUlgIp5zCssuH07MnFBXB+efDgAHxTC5JkiRJkqQKLw6Li4sBqFOnDpMnT6ZDhw7Ur1+fo446ihdeeIGEhATuueeeMl87ePBgcnNzt34tWbKkouOqHGUtzCkxPfmXYkB2bgEz5y2Hc86B77+HffZh87iJnP+nBLKzoW1bePxxiGzjcYiSJEmSJEmqGBU+VTkajQJwyCGHsNtuu5U4165dO/bcc0++/fZb1qxZQ4MGDUqcT0pKIikpqaIjqoKsyN92afhzzUYMgenTISUFJk9m6Ogo774L9evDpEnBn5IkSZIkSYqvCh9xuM8++wCUKgW32HJ8w4YNFR1FcdYsJflXrzn7izfZ87mxwc7EiUyZty933hnsPvkk7LtvBQaUJEmSJEnSNlV4cdi5c2cAvvrqq1LnNm3axLfffku9evVo2rRpRUdRnHXMaER6NJltzTI+KHset7/xcLCTmcmC/U/lwguD3auvhnPPjUtMSZIkSZIklaHCi8PWrVvTtWtXvv32W5544okS5+68807WrFnDGWecQa1aFT5rWnGWmBAhs0dbgFLlYdN1q3n0n7eTtHkTnHoqG24YxtlnQ24uHHYY/OUv8c8rSZIkSZKkn0RisVhZi96WqwULFnD44YezYsUKTj75ZPbdd19mz57N22+/TcuWLfn4449JS0v71e+Tl5dHNBolNzeX1NTUio6tcjJtTjYjps7dulBK7aJNPP+PYfxh0RfBXOQZM7jk2lSeegqaNIHZs2H33UMOLUmSJEmSVA3tTL8Wl+IQYMmSJQwbNoxp06axatUq0tLSOPXUUxk2bBjNmjXboe9hcVh1FRXHyFqYw4r8Ajrdk0naxCchNRWysnjqw3245BJISIA33oAuXcJOK0mSJEmSVD1VyuKwPFgcVgNPPQWXXBJsT5nC7N17cPjhUFAAt90GN98cbjxJkiRJkqTqbGf6NR8sqPiZMQP69w+2b72VNUf14Ow/BqXhySfD4MHhxpMkSZIkSdJPLA4VH3l5cPbZsHEjnH46xYNv5qKz4L//hVatYPz4YKqyJEmSJEmSKgerGsXH0KHw/ffQujWMH8/d9yQwZQrUqQP/+Ac0ahR2QEmSJEmSJP2cxaEq3qefwkMPBdtjxvDupykMGRLsPvgg/PGP4UWTJEmSJElS2ZyqrIpVVAT9+kFxMZx/Pkv3P4Gefwh2L7oILr007ICSJEmSJEkqiyMOVbEeeSQYcRiNsumue+nZE1asgAMPDE5FImEHlCRJkiRJUlksDlVxfvgBbr452L7jDgbfn8YHH0BqavBcw112CTeeJEmSJEmSts2pyqo4114L+fnQqRMzDu7HPQOCw+PGQZs2oSaTJEmSJEnSr7A4VMV47TV44QVITKTo4Ue5ol8wuPWii+CMM0LOJkmSJEmSpF/lVGWVv/XrYcD/Dy+8+mqe+OTgLY855K67wo0mSZIkSZKkHeOIQ5W/226DRYtg991ZedUIBrcPDt96K+y6a6jJJEmSJEmStIMccajy9eWXcPfdwfaDDzJkVH1Wrw5WUd4yCFGSJEmSJEmVn8Whyk9xMVx+OWzeDKeeyszmp/PEE8Gphx+GWo5vlSRJkiRJqjKsclR+xo6FDz6AXXah+P4HueJciMWgd2848siww0mSJEmSJGlnOOJQ5ePHH+HGG4PtESN48l97MHMmpKbCX/4SbjRJkiRJkiTtPEccqnzccAPk5MCBB7Kq19XctH9weMQISEsLN5okSZIkSZJ2niMO9fu9+y48/TREIvDYY9w8vDY5OdCuHVx5ZdjhJEmSJEmS9FtYHOr3KSwMFkQB6NePT2odyuOPB7suiCJJkiRJklR1Wevo97n7bvjmG2jWjOLbRnHlycGCKH/6Exx9dNjhJEmSJEmS9FtZHGq7iopjZC3MYUV+Ac1SkumY0YjEhEhw8ttv4bbbgu377mPs5IbMmAEpKUGfKEmSJEmSpKrL4lDbNG1ONiOmziU7t2DrsfRoMpk92tJ9/zS44opgqvLxx5PT7Xxu2je4ZvhwSE8PJ7MkSZIkSZLKh8WhyjRtTjb9J84i9ovjy3IL6D9xFi82XszBb7wBSUnwyCPcMjTCypWw//5w1VWhRJYkSZIkSVI5cnEUlVJUHGPE1LmlSkOAGJBSsJYWt94cHBgyhFn5bXj00WD3oYegdu14JZUkSZIkSVJFccShSslamFNievIv3TB9PI3XrmZDRmuSbhjEFccFC6Kcdx4ce2z8ckqSJEmSJKniWByqlBX52y4ND176DX+a/RoAswaPYt5zSXz8MdSvD6NHxyuhJEmSJEmSKprFoUpplpJc5vHE4iJuf/1hEogxaf/O1P/j8QzqHpzLzITmzeMYUpIkSZIkSRXKZxyqlI4ZjUiPJhP5xfE+n0xh/xX/ZU1yfZ48bQBTnmzIjz/CfvvB1VeHElWSJEmSJEkVxOJQpSQmRMjs0RZga3mYnvcjAz94BoC7junDyX84hkcfDc66IIokSZIkSVL1Y3GoMnVvl86YXu1JiwbTloe/+Rj1NhXwecv9OerOm3j2vqYUF8O558Jxx4UcVpIkSZIkSeXOZxxqm7q3S+eEtmnM/+sz7Dv/Y4pr1aLdS8/y2WfN+fe/oV49uOeesFNKkiRJkiSpIlgcarsS169j39uHAJAwcCBrWh7IjV2Dc0OHwu67hxhOkiRJkiRJFcbiUNs3ejQsWQItW8KwYWQOgRUrYJ994Nprww4nSZIkSZKkiuIzDrVtP/7401zkv/yFz7+tx0MPBbsPPQR16oQXTZIkSZIkSRXLEYfatjvvhLVr4Q9/IHbW2Vx5LBQXw9lnw/HHhx1OkiRJkiRJFckRhyrbkiXw8MPB9qhRTHw2gQ8+gF12gXvvDTeaJEmSJEmSKp4jDlW2kSOhsBCOPprcQ7txw77B4VtugRYtwo0mSZIkSZKkiueIQ5U2bx489VSwPWoUw0dEWL4c2rSBgQPDjSZJkiRJkqT4sDhUaZmZUFQEJ5/MnOgRPPhgcPjBByEpKdxokiRJkiRJig+LQ5X02Wfw3HPB9m23MXRo0CGefjp06xZmMEmSJEmSJMWTxaFKuuWW4M/zzuPTooOZPBkiERg1KtRUkiRJkiRJijMXR9FPPvwQXnkFEhPh1lsZ/v/PM7zgAthvv3CjSZIkSZIkKb4ccahALAaDBwfbF19M1uo2vPwyJCTAsGHhRpMkSZIkSVL8OeJQgddfh/ffD1Y/GTaMzEuDw717w957hxtNkiRJkiRJ8eeIQ0FxMQwZEmxfcQX/Xrw706YFM5aHDg03miRJkiRJksLhiEPBpEkwezbUrw833UTmBcHhPn2gdetQk0mSJEmSJCkkjjis6TZv/mlY4XXXMf2rprz5JtSq9dMCy5IkSZIkSap5HHFY040fD998A40bw8CBZJ4WHL7kEmjVKtRkkiRJkiRJCpEjDmuyggIYPjzYHjyYdz5N5d13oU4duPnmMINJkiRJkiQpbI44rMkeewyWLIHmzYn1H8CwbsHhyy6DFi3CjSZJkiRJkqRwOeKwpsrPh9tvD7aHDePND+vywQeQlASDB4cbTZIkSZIkSeFzxGFNdf/98OOPsNdexPr0ZejRweH+/WG33cKNJkmSJEmSpPA54rAmWrUK7r472L71Vl57szYzZkDdujBoULjRJEmSJEmSVDk44rAm+stfIC8PDjyQ2Lk9GdYpOHzFFZCWFm40SZIkSZIkVQ6OOKxpli6FBx4Itm+/namvJPDpp1CvHtx4Y7jRJEmSJEmSVHk44rCmue02KCiAww+n+MSTGfbH4PBVV0HTpuFGkyRJkiRJUuXhiMOaZMEC+Otfg+1Ro5j8UoTPP4eUFLj++nCjSZIkSZIkqXJxxGFNMnw4bN4M3bpRfNQxZB4UHL7mGmjcOMxgkiRJkiRJqmwccVhTfPEFPPNMsH377fzjHzBnDkSjcO214UaTJEmSJElS5eOIw5rillsgFoOzz6bo4D8yvHdweOBAaNgw3GiSJEmSJEmqfBxxWBN8/DFMmQIJCXDrrfz97/DVV0FhePXVYYeTJEmSJElSZeSIw+ouFoMhQ4Ltiy5ic5v9GHF6sHv99cFUZUmSJEmSJOmXHHFY3b31FrzzDtSpA5mZPPsszJsXLIZy1VVhh5MkSZIkSVJlZXFYnf18tOHll7Npt5bcemuwe+ONkJISXjRJkiRJkiRVbhaH1dnkyTBzJtSrB0OGMGECLFgAzZrBFVeEHU6SJEmSJEmVmcVhdVVUFKykDHDNNWxsuCsjRwa7N90UdImSJEmSJEnStlgcVlfPPANz5wZLJ19/PWPHwqJFkJYGl18edjhJkiRJkiRVdhaH1dHmzTBiRLA9aBCFdRtw223B7pAhULdueNEkSZIkSZJUNcSlOGzVqhWRSKTMr2OPPTYeEWqW556D//4XmjSBK6/kiSfg+++heXO49NKww0mSJEmSJKkqqBWvHxSNRrnmmmtKHW/VqlW8ItQMxcUwalSwfe21bEiot3X35pshOTm8aJIkSZIkSao64lYcNmjQgOHDh8frx9VcL74IX30F0ShccQWPPw5Ll8Iee8DFF4cdTpIkSZIkSVWFzzisTmIxuP32YPuqq1hfO8oddwS7t9wCSUnhRZMkSZIkSVLVErcRh4WFhYwbN46lS5eSmppKhw4d6NSpU7x+fM3w2mswezbUqwdXX82YMbB8OWRkQJ8+YYeTJEmSJElSVRK34nDZsmX07du3xLEOHTrwt7/9jdatW5f5msLCQgoLC7fu5+XlVWjGKi0WY+vSyZdfztrkJtx1V7A7dCjUrh1eNEmSJEmSJFU9cZmq3LdvX9566y2WL1/OunXrmD17Nr1792bmzJl06dKF/Pz8Ml93xx13EI1Gt361aNEiHnGrpnffhY8+CuYjX3cdDz8MP/4Ie+0FvXuHHU6SJEmSJElVTSQWi8XC+uEXXnghEyZM4J577mHgwIGlzpc14rBFixbk5uaSmpoaz6iV3/HHw1tvwYABrL/7YVq2hJUrYfx4i0NJkiRJkiQF8vLyiEajO9Svhbo4Sr9+/QD48MMPyzyflJREampqiS+V4eOPg9KwVi248UbGjg1Kw4wMOP/8sMNJkiRJkiSpKgq1OGzSpAkA69atCzNG1bdlJeXevdncvCWjRwe7118fdImSJEmSJEnSzgq1OJwxYwYArVq1CjNG1fbZZ/Dyy5CQADfdxPPPw6JF0LQp/GItGkmSJEmSJGmHVXhx+PXXX7N+/foyjw8aNAiACy64oKJjVF+jRgV/nnsusTZ7b11J+Yze63njmx/4aMEqiopDe4ylJEmSJEmSqqgKn8j63HPPce+993L00UfTsmVL6tWrx7x583j11VfZtGkTgwcP5uijj67oGNXT11/DP/4RbA8ZwrRp8J//QEKdzbxa9D6vP7cZgPRoMpk92tK9XXqIYSVJkiRJklSVVHhx2LlzZ7766itmz57N+++/z/r162nSpAknnXQSAwYMoGvXrhUdofq64w6IxeC00+CAAxh0cSGQRP2DFpOYvHnrZctyC+g/cRZjerW3PJQkSZIkSdIOicRisSozj3Vnlouu9hYuhDZtoKgIsrL4cNMhHHlEBBKKaX7529RKKSxxeQRIiybzwaDjSEyIhJNZkiRJkiRJodqZfi3UxVH0O9x1V1Aadu0KHTowZPgmAOrt/0Op0hAgBmTnFpC1MCfOQSVJkiRJklQVWRxWRT/8AGPHBts338xXX8H0f9UBYkQ7LdjuS1fkF1R8PkmSJEmSJFV5Ff6MQ1WA0aNh40Y46ig4+mjuvjg4XHfv5dRuvG67L22WkhyHgJIkSZIkSarqHHFY1fz4Izz2WLB98818/z1MnBjs7tllCdt6emGEYHXljhmN4pFSkiRJkiRJVZzFYVVz332wYQMccgh07cp998GmTXDssTB6wO4ApcrDLfuZPdq6MIokSZIkSZJ2iMVhVbJmDTz8cLB9883krI5sHXw4aBB0b5fOmF7tSYuWnI6cFk1mTK/2dG+XHt+8kiRJkiRJqrJ8xmFV8tBDkJcH7drBqafyyChYtw4OOgi6dQsu6d4unRPappG1MIcV+QU0SwmmJzvSUJIkSZIkSTvD4rCqWLs2mKYMMGQI6wsSuP/+YHfQIIj8rBdMTIhwWOvG8c8oSZIkSZKkasOpylXFY49BTg60aQPnnsvYsbByJWRkwDnnhB1OkiRJkiRJ1Y3FYVVQUACjRwfbN93E5lji1t3rr4dajhuVJEmSJElSObM4rAqeegqWLYM99oBevXj+eVi0CJo2hb59ww4nSZIkSZKk6sjisLLbtAnuuivYvvFGYrXrbN29+mqoWze8aJIkSZIkSaq+LA4ru4kTYfFi2HVXuPhipk2D//wH6teHAQPCDidJkiRJkqTqyuKwMisqgjvuCLavvx7q1uXOO4Pdfv2gYcPwokmSJEmSJKl6sziszF54AebPh0aN4PLL+fhjmD4dateGa68NO5wkSZIkSZKqM4vDyqq4GG6/Pdi+5hqoX3/rsw1794bmzUNLJkmSJEmSpBrA4rCymjoV5syBlBS48kq++gomT4ZIBG64IexwkiRJkiRJqu5qhR1AZYjFfhpteOWV0LAhd18X7J5+Ouy7b2jJJEmSJEmSVEM44rAy+te/YOZMqFsXrr2W778PFlcGGDQo3GiSJEmSJEmqGSwOK6Mtow379YOmTbnvPti0CY49Fjp1CjWZJEmSJEmSagiLw8rm/feDpZPr1IHrrycnBx57LDjlaENJkiRJkiTFi8VhZbNltGHfvtC8OY88AuvWwUEHQbdu4UaTJEmSJElSzWFxWJnMnAmvvw6JiTBoEOvXw/33B6cGDQpWVJYkSZIkSZLiwVWVK5PExOBBhnvsARkZjH0YVq6EjAw455yww0mSJEmSJKkmsTisTNq3h3fegcJCNm+G0aODw9dfD7X8X0qSJEmSJElx5FTlyigpieefh0WLoGnT4HGHkiRJkiRJUjxZHFZCsRjcdVewffXVULduuHkkSZIkSZJU81gcVkLTpsF//gP168OAAWGnkSRJkiRJUk1kcViJFBXH+GjBKm64pRCASy+L0bBhyKEkSZIkSZJUI1kcVhLT5mRz5F1vc+bwr/lyVhIkFPNe7Q+ZNic77GiSJEmSJEmqgSwOK4Fpc7LpP3EW2bkF5M5oDUC9/X8gh1z6T5xleShJkiRJkqS4szgMWVFxjBFT5xIDNq2sz4b5aUCMaKcFxP7/mhFT51JUHNvOd5EkSZIkSZLKl8VhyLIW5pCdWwBAUUFtajfOp+7ey6ndeB0AMSA7t4CshTkhppQkSZIkSVJNUyvsADXdivyCrdvJu68m/ZLpFBeW/p/l59dJkiRJkiRJFc0RhyFrlpJcYj8SgcTkzb96nSRJkiRJklSRLA5D1jGjEenRZCLbOB8B0qPJdMxoFM9YkiRJkiRJquEsDkOWmBAhs0dbgFLl4Zb9zB5tSUzYVrUoSZIkSZIklT+Lw0qge7t0xvRqT1q05HTktGgyY3q1p3u79JCSSZIkSZIkqaZycZRKonu7dE5om0bWwhxW5BfQLCWYnuxIQ0mSJEmSJIXB4rASSUyIcFjrxmHHkCRJkiRJkpyqLEmSJEmSJKk0i0NJkiRJkiRJpVgcSpIkSZIkSSrF4lCSJEmSJElSKRaHkiRJkiRJkkqxOJQkSZIkSZJUisWhJEmSJEmSpFIsDiVJkiRJkiSVYnEoSZIkSZIkqRSLQ0mSJEmSJEmlWBxKkiRJkiRJKsXiUJIkSZIkSVIpFoeSJEmSJEmSSrE4lCRJkiRJklSKxaEkSZIkSZKkUiwOJUmSJEmSJJVicShJkiRJkiSpFItDSZIkSZIkSaVYHEqSJEmSJEkqxeJQkiRJkiRJUim1wg6wM2KxGAB5eXkhJ5EkSZIkSZKqni292paebXuqVHGYn58PQIsWLUJOIkmSJEmSJFVd+fn5RKPR7V4Tie1IvVhJFBcXs3TpUlJSUohEImHHqRB5eXm0aNGCJUuWkJqaGnYcqcbxHpTC530ohct7UAqf96EUrup+D8ZiMfLz89ltt91ISNj+Uwyr1IjDhIQEdt9997BjxEVqamq1/D+nVFV4D0rh8z6UwuU9KIXP+1AKV3W+B39tpOEWLo4iSZIkSZIkqRSLQ0mSJEmSJEmlWBxWMklJSWRmZpKUlBR2FKlG8h6Uwud9KIXLe1AKn/ehFC7vwZ9UqcVRJEmSJEmSJMWHIw4lSZIkSZIklWJxKEmSJEmSJKkUi0NJkiRJkiRJpVgcSpIkSZIkSSrF4lCSJEmSJElSKRaHlcTMmTM56aSTaNCgAfXq1ePQQw/l+eefDzuWVGO0atWKSCRS5texxx4bdjyp2pg4cSL9+vXjkEMOISkpiUgkwrhx47Z5fV5eHgMHDqRly5YkJSXRqlUrbrjhBtauXRu/0FI1sjP34PDhw7f52RiJRFi0aFFcs0vVwQ8//MD//u//0rVrV/bYYw/q1KlDWloaZ511FjNmzCjzNX4WSuVnZ+9BPwuhVtgBBO+88w7dunUjOTmZ8847j5SUFCZNmkTPnj1ZsmQJ1113XdgRpRohGo1yzTXXlDreqlWruGeRqqtbbrmF7777jiZNmpCens533323zWvXrVvHMcccw2effUbXrl05//zzmT17NqNHj+a9995j+vTpJCcnxzG9VPXtzD24xUUXXVTmZ2GDBg3KP6BUzT344IPcddddtG7dmq5du9K0aVPmz5/P5MmTmTx5Ms8++yw9e/bcer2fhVL52tl7cIsa/VkYU6g2bdoUa926dSwpKSk2e/bsrcfXrFkT23vvvWN16tSJLVq0KLyAUg3RsmXLWMuWLcOOIVV7//rXv7Z+rt1xxx0xIDZ27Ngyrx02bFgMiA0aNKjE8UGDBsWA2KhRoyo6rlTt7Mw9mJmZGQNi77zzTvwCStXcpEmTYu+++26p49OnT4/Vrl071rBhw1hBQcHW434WSuVrZ+9BPwtjMacqh+ztt99mwYIFXHDBBRx88MFbj0ejUYYMGcLGjRt5+umnwwsoSVI5Ov7442nZsuWvXheLxXjiiSeoX78+Q4cOLXFu6NCh1K9fnyeeeKKiYkrV1o7eg5IqxplnnskxxxxT6vhRRx1F586dWb16NV988QXgZ6FUEXbmHlTAqcohe/fddwHo2rVrqXPdunUD4L333otnJKnGKiwsZNy4cSxdupTU1FQ6dOhAp06dwo4l1Ujz589n6dKldOvWjXr16pU4V69ePY444ghef/11lixZQosWLUJKKdUM06dPZ8aMGSQkJNCmTRuOP/546tevH3YsqdqpXbs2ALVqBb+m+1koxdcv78Gfq8mfhRaHIZs/fz4Abdq0KXUuLS2N+vXrb71GUsVatmwZffv2LXGsQ4cO/O1vf6N169YhpZJqpu19Pm45/vrrrzN//nx/WZIqWGZmZon9Bg0acP/993PhhReGlEiqfhYvXsybb75Jeno6BxxwAOBnoRRPZd2DP1eTPwudqhyy3NxcIJiaXJbU1NSt10iqOH379uWtt95i+fLlrFu3jtmzZ9O7d29mzpxJly5dyM/PDzuiVKPsyOfjz6+TVP4OOuggnnrqKf773/+yYcMGFi5cyIMPPkgkEqFPnz5MmTIl7IhStbBp0yZ69+5NYWEhd911F4mJiYCfhVK8bOseBD8LwRGHkgSU/hekgw8+mPHjxwMwYcIE/vrXvzJw4MAwokmSFIozzjijxH6rVq248sor2W+//TjhhBO45ZZbOPXUU0NKJ1UPxcXF9OnTh+nTp3PppZfSu3fvsCNJNcqv3YN+FjriMHRb/vVoW/9KlJeXt81/YZJU8fr16wfAhx9+GHISqWbZkc/Hn18nKX66dOlC69at+eKLL7bei5J2XnFxMRdffDHPPvssvXr14tFHHy1x3s9CqWL92j24PTXps9DiMGRbnldR1nMMly1bxtq1a7f5TAtJFa9JkyYArFu3LuQkUs2yvc/Hnx/3M1IKx5bPx/Xr14ecRKqaiouL6du3L08//TTnn38+48aNIyGh5K/nfhZKFWdH7sFfU1M+Cy0OQ7ZlGfA33nij1LnXX3+9xDWS4m/GjBlAMCRdUvy0adOG3XbbjQ8//LBUcb9u3To+/PBDMjIyfBi8FIJ169bx5ZdfUq9eva2/NEnacVsKi/Hjx9OzZ08mTJhQ4plqW/hZKFWMHb0Ht6cmfRZaHIasS5cu7Lnnnjz77LN89tlnW4/n5uYyatQo6tSpUyNW6ZHC9PXXX5f5r0Rff/01gwYNAuCCCy6IdyypRotEIvz5z39m7dq1jBw5ssS5kSNHsnbtWi699NKQ0knVX35+PvPmzSt1fMOGDVx66aXk5+dz7rnnUquWj0yXdsaWqZHjx4/nnHPOYeLEidssLPwslMrfztyDfhYGIrFYLBZ2iJrunXfeoVu3biQnJ3PeeeeRkpLCpEmT+O677xg9ejTXXXdd2BGlam348OHce++9HH300bRs2ZJ69eoxb948Xn31VTZt2sTgwYMZNWpU2DGlauGJJ57ggw8+AOCLL75g1qxZHHHEEey1114AHHnkkfz5z38Ggn/JPeKII/j888/p2rUr7du3Z9asWbzxxht06NCB9957j7p164b2XqSqaEfvwUWLFrHnnnvSoUMH9ttvP9LS0li+fDlvvvkm33//PQcccADvvPMOjRs3DvPtSFXO8OHDGTFiBPXr1+fqq68us3A4/fTTOfjggwE/C6XytjP3oJ+FAYvDSiIrK4vMzEz+/e9/s2nTJg444AAGDhxIz549w44mVXvvvfcejzzyCLNnz2b58uWsX7+eJk2a0KlTJwYMGEDXrl3DjihVG3369OHpp5/e5vmLLrqIcePGbd3Pzc1l+PDhTJo0iWXLlpGens4555xDZmYmKSkpcUgsVS87eg/m5eUxZMgQsrKyWLRoEatXr6Zu3brst99+nH322Vx55ZWWFdJv8Gv3IMDYsWPp06fP1n0/C6XyszP3oJ+FAYtDSZIkSZIkSaX4jENJkiRJkiRJpVgcSpIkSZIkSSrF4lCSJEmSJElSKRaHkiRJkiRJkkqxOJQkSZIkSZJUisWhJEmSJEmSpFIsDiVJkiRJkiSVYnEoSZIkSZIkqRSLQ0mSJEmSJEmlWBxKkiRJkiRJKsXiUJIkSZIkSVIpFoeSJEmSJEmSSvk/OktqHf7BE1cAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "fig, ax = plt.subplots()\n", "ax.plot(x1, y, \"o\", label=\"Data\")\n", "ax.plot(x1, y_true, \"b-\", label=\"True\")\n", "ax.plot(np.hstack((x1, x1n)), np.hstack((ypred, ynewpred)), \"r\", label=\"OLS prediction\")\n", "ax.legend(loc=\"best\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Predicting with Formulas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using formulas can make both estimation and prediction a lot easier" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:26.304025Z", "iopub.status.busy": "2023-02-02T19:18:26.303729Z", "iopub.status.idle": "2023-02-02T19:18:26.318881Z", "shell.execute_reply": "2023-02-02T19:18:26.318172Z" } }, "outputs": [], "source": [ "from statsmodels.formula.api import ols\n", "\n", "data = {\"x1\": x1, \"y\": y}\n", "\n", "res = ols(\"y ~ x1 + np.sin(x1) + I((x1-5)**2)\", data=data).fit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We use the `I` to indicate use of the Identity transform. Ie., we do not want any expansion magic from using `**2`" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:26.322108Z", "iopub.status.busy": "2023-02-02T19:18:26.321866Z", "iopub.status.idle": "2023-02-02T19:18:26.333531Z", "shell.execute_reply": "2023-02-02T19:18:26.332778Z" } }, "outputs": [ { "data": { "text/plain": [ "Intercept 5.080672\n", "x1 0.482493\n", "np.sin(x1) 0.490729\n", "I((x1 - 5) ** 2) -0.018790\n", "dtype: float64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res.params" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we only have to pass the single variable and we get the transformed right-hand side variables automatically" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-02-02T19:18:26.336851Z", "iopub.status.busy": "2023-02-02T19:18:26.336607Z", "iopub.status.idle": "2023-02-02T19:18:26.349288Z", "shell.execute_reply": "2023-02-02T19:18:26.348706Z" } }, "outputs": [ { "data": { "text/plain": [ "0 10.946538\n", "1 10.813232\n", "2 10.570009\n", "3 10.260725\n", "4 9.943108\n", "5 9.674629\n", "6 9.498427\n", "7 9.432746\n", "8 9.466473\n", "9 9.561855\n", "dtype: float64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res.predict(exog=dict(x1=x1n))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.9" } }, "nbformat": 4, "nbformat_minor": 4 }