Source code for statsmodels.sandbox.regression.anova_nistcertified

"""calculating anova and verifying with NIST test data

compares my implementations, stats.f_oneway and anova using statsmodels.OLS
"""

from statsmodels.compat.python import lmap

import os

import numpy as np
from scipy import stats

from statsmodels.regression.linear_model import OLS
from statsmodels.tools.tools import add_constant

from .try_ols_anova import data2dummy

filenameli = [
    "SiRstv.dat",
    "SmLs01.dat",
    "SmLs02.dat",
    "SmLs03.dat",
    "AtmWtAg.dat",
    "SmLs04.dat",
    "SmLs05.dat",
    "SmLs06.dat",
    "SmLs07.dat",
    "SmLs08.dat",
    "SmLs09.dat",
]
# filename = 'SmLs03.dat' # 'SiRstv.dat' # 'SmLs09.dat'#, 'AtmWtAg.dat' # 'SmLs07.dat'


def getnist(filename):
    here = os.path.dirname(__file__)
    fname = os.path.abspath(os.path.join(here, "data", filename))
    with open(fname, encoding="utf-8") as fd:
        content = fd.read().split("\n")

    [line.split() for line in content[60:]]
    certified = [line.split() for line in content[40:48] if line]
    dataf = np.loadtxt(fname, skiprows=60)
    y, x = dataf.T
    y = y.astype(int)
    caty = np.unique(y)
    f = float(certified[0][-1])
    R2 = float(certified[2][-1])
    resstd = float(certified[4][-1])
    dfbn = int(certified[0][-4])
    dfwn = int(certified[1][-3])  # dfbn->dfwn is this correct
    prob = stats.f.sf(f, dfbn, dfwn)
    return y, x, np.array([f, prob, R2, resstd]), certified, caty


[docs] def anova_oneway(y, x, seq=0): # new version to match NIST # no generalization or checking of arguments, tested only for 1d yrvs = y[:, np.newaxis] # - min(y) # subracting mean increases numerical accuracy for NIST test data sets xrvs = x[:, np.newaxis] - x.mean() # for 1d#- 1e12 trick for 'SmLs09.dat' from .try_catdata import groupsstats_dummy meang, varg, xdevmeangr, countg = groupsstats_dummy(yrvs[:, :1], xrvs[:, :1]) # TODO: the following does not work as replacement # from .try_catdata import groupsstats_dummy, groupstatsbin # gcount, gmean , meanarr, withinvar, withinvararr = groupstatsbin(y, x) sswn = np.dot(xdevmeangr.T, xdevmeangr) ssbn = np.dot((meang - xrvs.mean()) ** 2, countg.T) nobs = yrvs.shape[0] ncat = meang.shape[1] dfbn = ncat - 1 dfwn = nobs - ncat msb = ssbn / float(dfbn) msw = sswn / float(dfwn) f = msb / msw prob = stats.f.sf(f, dfbn, dfwn) R2 = ssbn / (sswn + ssbn) # R-squared resstd = np.sqrt(msw) # residual standard deviation # print(f, prob def _fix2scalar(z): # return number if np.shape(z) == (1, 1): return z[0, 0] else: return z f, prob, R2, resstd = lmap(_fix2scalar, (f, prob, R2, resstd)) return f, prob, R2, resstd
[docs] def anova_ols(y, x): X = add_constant(data2dummy(x), prepend=False) res = OLS(y, X).fit() return res.fvalue, res.f_pvalue, res.rsquared, np.sqrt(res.mse_resid)
if __name__ == "__main__": print("\n using new ANOVA anova_oneway") print("f, prob, R2, resstd") for fn in filenameli: print(fn) y, x, cert, certified, caty = getnist(fn) res = anova_oneway(y, x) # TODO: figure out why these results are less accurate/precise # than others rtol = {"SmLs08.dat": 0.027, "SmLs07.dat": 1.7e-3, "SmLs09.dat": 1e-4}.get( fn, 1e-7 ) np.testing.assert_allclose(np.array(res), cert, rtol=rtol) print("\n using stats ANOVA f_oneway") for fn in filenameli: print(fn) y, x, cert, certified, caty = getnist(fn) xlist = [x[y == ii] for ii in caty] res = stats.f_oneway(*xlist) print(np.array(res) - cert[:2]) print("\n using statsmodels.OLS") print("f, prob, R2, resstd") for fn in filenameli[:]: print(fn) y, x, cert, certified, caty = getnist(fn) res = anova_ols(x, y) print(np.array(res) - cert)