{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Trends and cycles in unemployment\n", "\n", "Here we consider three methods for separating a trend and cycle in economic data. Supposing we have a time series $y_t$, the basic idea is to decompose it into these two components:\n", "\n", "$$\n", "y_t = \\mu_t + \\eta_t\n", "$$\n", "\n", "where $\\mu_t$ represents the trend or level and $\\eta_t$ represents the cyclical component. In this case, we consider a *stochastic* trend, so that $\\mu_t$ is a random variable and not a deterministic function of time. Two of methods fall under the heading of \"unobserved components\" models, and the third is the popular Hodrick-Prescott (HP) filter. Consistent with e.g. Harvey and Jaeger (1993), we find that these models all produce similar decompositions.\n", "\n", "This notebook demonstrates applying these models to separate trend from cycle in the U.S. unemployment rate." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:11.566608Z", "iopub.status.busy": "2022-01-22T19:22:11.566155Z", "iopub.status.idle": "2022-01-22T19:22:12.737332Z", "shell.execute_reply": "2022-01-22T19:22:12.736381Z" } }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:12.742502Z", "iopub.status.busy": "2022-01-22T19:22:12.741726Z", "iopub.status.idle": "2022-01-22T19:22:13.947475Z", "shell.execute_reply": "2022-01-22T19:22:13.947848Z" } }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import statsmodels.api as sm\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:13.953590Z", "iopub.status.busy": "2022-01-22T19:22:13.952503Z", "iopub.status.idle": "2022-01-22T19:22:14.523350Z", "shell.execute_reply": "2022-01-22T19:22:14.524095Z" } }, "outputs": [], "source": [ "from pandas_datareader.data import DataReader\n", "endog = DataReader('UNRATE', 'fred', start='1954-01-01')\n", "endog.index.freq = endog.index.inferred_freq" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Hodrick-Prescott (HP) filter\n", "\n", "The first method is the Hodrick-Prescott filter, which can be applied to a data series in a very straightforward method. Here we specify the parameter $\\lambda=129600$ because the unemployment rate is observed monthly." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:14.528153Z", "iopub.status.busy": "2022-01-22T19:22:14.526756Z", "iopub.status.idle": "2022-01-22T19:22:14.538635Z", "shell.execute_reply": "2022-01-22T19:22:14.539005Z" } }, "outputs": [], "source": [ "hp_cycle, hp_trend = sm.tsa.filters.hpfilter(endog, lamb=129600)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Unobserved components and ARIMA model (UC-ARIMA)\n", "\n", "The next method is an unobserved components model, where the trend is modeled as a random walk and the cycle is modeled with an ARIMA model - in particular, here we use an AR(4) model. The process for the time series can be written as:\n", "\n", "\n", "\\begin{align}\n", "y_t & = \\mu_t + \\eta_t \\\\\n", "\\mu_{t+1} & = \\mu_t + \\epsilon_{t+1} \\\\\n", "\\phi(L) \\eta_t & = \\nu_t\n", "\\end{align}\n", "\n", "\n", "where $\\phi(L)$ is the AR(4) lag polynomial and $\\epsilon_t$ and $\\nu_t$ are white noise." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:14.542689Z", "iopub.status.busy": "2022-01-22T19:22:14.541347Z", "iopub.status.idle": "2022-01-22T19:22:15.712490Z", "shell.execute_reply": "2022-01-22T19:22:15.713143Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Unobserved Components Results \n", "==============================================================================\n", "Dep. Variable: UNRATE No. Observations: 816\n", "Model: random walk Log Likelihood -456.970\n", " + AR(4) AIC 925.940\n", "Date: Sat, 22 Jan 2022 BIC 954.160\n", "Time: 19:22:15 HQIC 936.771\n", "Sample: 01-01-1954 \n", " - 12-01-2021 \n", "Covariance Type: opg \n", "================================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "--------------------------------------------------------------------------------\n", "sigma2.level 0.0728 0.161 0.453 0.650 -0.242 0.387\n", "sigma2.ar 0.1051 0.163 0.646 0.518 -0.214 0.424\n", "ar.L1 1.0589 0.095 11.202 0.000 0.874 1.244\n", "ar.L2 -0.1712 0.276 -0.621 0.534 -0.711 0.369\n", "ar.L3 0.0863 0.167 0.517 0.605 -0.241 0.414\n", "ar.L4 -0.0205 0.071 -0.288 0.773 -0.160 0.119\n", "===================================================================================\n", "Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 5933950.90\n", "Prob(Q): 0.94 Prob(JB): 0.00\n", "Heteroskedasticity (H): 9.35 Skew: 17.08\n", "Prob(H) (two-sided): 0.00 Kurtosis: 419.62\n", "===================================================================================\n", "\n", "Warnings:\n", "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" ] } ], "source": [ "mod_ucarima = sm.tsa.UnobservedComponents(endog, 'rwalk', autoregressive=4)\n", "# Here the powell method is used, since it achieves a\n", "# higher loglikelihood than the default L-BFGS method\n", "res_ucarima = mod_ucarima.fit(method='powell', disp=False)\n", "print(res_ucarima.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Unobserved components with stochastic cycle (UC)\n", "\n", "The final method is also an unobserved components model, but where the cycle is modeled explicitly.\n", "\n", "\n", "\\begin{align}\n", "y_t & = \\mu_t + \\eta_t \\\\\n", "\\mu_{t+1} & = \\mu_t + \\epsilon_{t+1} \\\\\n", "\\eta_{t+1} & = \\eta_t \\cos \\lambda_\\eta + \\eta_t^* \\sin \\lambda_\\eta + \\tilde \\omega_t \\qquad & \\tilde \\omega_t \\sim N(0, \\sigma_{\\tilde \\omega}^2) \\\\\n", "\\eta_{t+1}^* & = -\\eta_t \\sin \\lambda_\\eta + \\eta_t^* \\cos \\lambda_\\eta + \\tilde \\omega_t^* & \\tilde \\omega_t^* \\sim N(0, \\sigma_{\\tilde \\omega}^2)\n", "\\end{align}\n", "" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:15.717016Z", "iopub.status.busy": "2022-01-22T19:22:15.715615Z", "iopub.status.idle": "2022-01-22T19:22:16.546420Z", "shell.execute_reply": "2022-01-22T19:22:16.546800Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Unobserved Components Results \n", "=====================================================================================\n", "Dep. Variable: UNRATE No. Observations: 816\n", "Model: random walk Log Likelihood -460.424\n", " + damped stochastic cycle AIC 928.847\n", "Date: Sat, 22 Jan 2022 BIC 947.650\n", "Time: 19:22:16 HQIC 936.065\n", "Sample: 01-01-1954 \n", " - 12-01-2021 \n", "Covariance Type: opg \n", "===================================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-----------------------------------------------------------------------------------\n", "sigma2.level 0.1418 0.023 6.279 0.000 0.098 0.186\n", "sigma2.cycle 0.0292 0.021 1.380 0.168 -0.012 0.071\n", "frequency.cycle 0.3491 0.199 1.751 0.080 -0.042 0.740\n", "damping.cycle 0.7724 0.065 11.795 0.000 0.644 0.901\n", "===================================================================================\n", "Ljung-Box (L1) (Q): 1.72 Jarque-Bera (JB): 6042026.82\n", "Prob(Q): 0.19 Prob(JB): 0.00\n", "Heteroskedasticity (H): 9.38 Skew: 17.26\n", "Prob(H) (two-sided): 0.00 Kurtosis: 423.92\n", "===================================================================================\n", "\n", "Warnings:\n", "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" ] } ], "source": [ "mod_uc = sm.tsa.UnobservedComponents(\n", " endog, 'rwalk',\n", " cycle=True, stochastic_cycle=True, damped_cycle=True,\n", ")\n", "# Here the powell method gets close to the optimum\n", "res_uc = mod_uc.fit(method='powell', disp=False)\n", "# but to get to the highest loglikelihood we do a\n", "# second round using the L-BFGS method.\n", "res_uc = mod_uc.fit(res_uc.params, disp=False)\n", "print(res_uc.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Graphical comparison\n", "\n", "The output of each of these models is an estimate of the trend component $\\mu_t$ and an estimate of the cyclical component $\\eta_t$. Qualitatively the estimates of trend and cycle are very similar, although the trend component from the HP filter is somewhat more variable than those from the unobserved components models. This means that relatively mode of the movement in the unemployment rate is attributed to changes in the underlying trend rather than to temporary cyclical movements." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2022-01-22T19:22:16.572286Z", "iopub.status.busy": "2022-01-22T19:22:16.565207Z", "iopub.status.idle": "2022-01-22T19:22:17.338913Z", "shell.execute_reply": "2022-01-22T19:22:17.338139Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAFgCAYAAAClshQsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1gUVxfA4d/sLr33oiIgAmJDwd6wt1iTWJIYk5iY3qv50otppiemqLHEqLGXGE0sYG/YBQUB6b132DLfH4MosScUgfs+D4/L7JSzO+4yZ+6950qyLCMIgiAIgiAIgiAIdU3V0AEIgiAIgiAIgiAIzYNIQAVBEARBEARBEIR6IRJQQRAEQRAEQRAEoV6IBFQQBEEQBEEQBEGoFyIBFQRBEARBEARBEOqFSEAFQRAEQRAEQRCEeiESUEEQBKHJkSRpkSRJHzR0HBdJkvSOJElLGzoOQRAEQWhoIgEVBEEQ6pwkSfGSJA1p4BhmSZI0W5KkEEmSkhsyFkEhzoUgCELzIxJQQRAEobkYDfx5MytKkqSp41gEQRAEoVkSCaggCILQYCRJUkmS9JokSbGSJOVIkrRSkiT7que2SJL01D/WPylJ0sSqx/6SJG2TJClXkqQoSZImXec4doAvcBzYArhLklRc9eNe1UV2tSRJSyVJKgQekCTJRpKkBZIkpUmSlCJJ0geSJKmr9veAJEl7JUmaI0lSniRJFyRJGnnZ8bwkSdolSVKRJEnbAMcbvA/jJEk6IUlSYdV7MaJqubskSRurXmOMJEmPXLbNO5IkraqKuUiSpNOSJPlWtfRmSpKUJEnSsMvWD5Mk6SNJkg5XHWfDxfe66vmxkiRFSJKUX7Vuu8uei5ck6SVJkk5JklQgSdLvkiSZXvb8HVXx50uStF+SpE432laSJIurnYvrvU+CIAhC4ycSUEEQBKEhPQ2MBwYA7kAe8H3Vc8uBqRdXlCQpAGgNbK5KXrYBywBnYAowt2qdqxkO7JBluQQYCaTKsmxZ9ZNatc44YDVgC/wGLAJ0gA/QBRgGPHzZPnsAUSjJ5afAAkmSpKrnlgFHq557H5h+rTdAkqTuwBLg5apj9wfiq55eASRXvTd3AbMlSRp02eZjgF8BO5Tk+i+Uv+0tgPeAn/5xuPuBhwC3qtf2TVUMvijv93OAE0pL8SZJkowv23YSMALwAjoBD1Rt2wX4BXgUcKg65kZJkkyut+0NzoUgCILQRIkEVBAEQWhIjwH/k2U5WZblCuAd4K6qLrDrgEBJklpXrXsvsLZqvTuAeFmWF8qyrJNl+TiwBrj7Gse5me63B2RZXi/LsgGwBkYBz8myXCLLcibwJUqie1GCLMvzZFnWA4tRkjoXSZI8gG7Am7IsV8iyvBvYdJ3jzgB+kWV5myzLBlmWU2RZPidJUiugD/CqLMvlsiyfAOajJJEX7ZFl+S9ZlnXAKpTk8WNZlrUoyaunJEm2l63/qyzLZ6qSvzeBSVWtupOBzVUxaIE5gBnQ+7Jtv5FlOVWW5dyq1xNYtXwm8JMsy4dkWdbLsrwYqAB63sS2giAIQjMjElBBEAShIbUG1lV13cwHzgJ6wEWW5SJgM5eSvqkoLZMXt+txcbuqbe8FXP95AEmSVMBQYOsNYkn6R1xGQNpl+/8JpbX1ovSLD2RZLq16aElVS25VkndRwnWO2wqIvcpydyC36n24fD8tLvs947LHZUB2VUJ88feLMV10+WtMQHmNjlXHqo6xKglP+sex0i97XHrZflsDL/7jXLSq2ueNthUEQRCaGVFkQRAEQWhIScBDsizvu8bzy4G3JUnaDZgCoZdtt0uW5aE3cYxuKK2VWVW/y9dY7/LlSSiteI5VrYu3Ig2wkyTJ4rIk1OM6x00C2lxleSpgL0mS1WVJqAeQcovxXK7VZY89AC2QXXWsjhefqOpK3Oomj5UEfCjL8of/Ip5rvSeCIAhCEyVaQAVBEIT6YlRVfObijwb4EfjwYjdbSZKcJEkad9k2f6K0sL0H/F7VMgfwB+ArSdI0SZKMqn66XV445zKjUFpSL8oAHCRJsrlWoLIspwF/A59LkmQtKcWS2kiSNOBGL1KW5QQgHHhXkiRjSZL6oozVvJYFwIOSJA2uOk4LSZL8ZVlOAvYDH1W9X51Quuv+l/lE75MkKUCSJHOU93R1VYvpSmB0VQxGwIsoCfj+m9jnPOAxSZJ6SAoLSZJGS5JkdRPb3vBcCIIgCE2LSEAFQRCE+vInSrfQiz/vAF8DG4G/JUkqAg6iFPcBoGq851pgCEphn4vLi1CKAk1Bab1LBz4BLi98c1GN8Z+yLJ9DaVmNq+oyeq3Kq/cDxkAkSnGk1SjjPG/GPVWvIxd4G6XI0FXJsnwYeBBljGkBsAsl6Qal27EnymtcB7wty/L2m4zhan5FKa6UjtKi/ExVDFHAfcC3KC2iY4AxsixX3miHsiyHA48A36G8TzFUFSi6iW1v9lwIgiAITYQky6L3iyAIgtA0SZLkglIdtoXczP/gSZIUBiyVZXl+Q8ciCIIgNF+iBVQQBEFoymyAF5t78ikIgiAItwtRhEgQBEFosmRZjgaiGzoOQRAEQRAUoguuIAiCIAiCIAiCUC9EF1xBEARBEARBEAShXtzWXXAdHR1lT0/Phg5D+BdKSkqwsLBo6DCEWibOa9MkzmvTJM5r0yTOa9Mlzm3T1JzP69GjR7NlWXb65/LbOgH19PQkPDy8ocMQ/oWwsDBCQkIaOgyhlonz2jSJ89o0ifPaNInz2nSJc9s0NefzKklSwtWWiy64giAIgiAIgiAIQr0QCaggCIIgCIIgCIJQL0QCKgiCIAiCIAiCINSL23oM6NVotVqSk5MpLy9v6FCE67CxseHs2bOYmprSsmVLjIyMGjokQRAEQRAEQWgQRxPy8HGyxMZcXBM3ugQ0OTkZKysrPD09kSSpocMRrqGoqAhLS0tycnJITk7Gy8uroUMSBEEQBEEQhHonyzJ3/rCfdm7WbHm2X0OH0+AaXRfc8vJyHBwcRPLZCEiShIODg2itFgRBEARBEJotg6z8ezatsGEDuU00ugQUEMlnIyLOlSAIgiAIgtCcGWS5oUO4rTTKBFQQBEEQBEEQBKEx0BtEAno5kYDeovj4eDp06FBj2TvvvMOcOXMAmDNnDv7+/gQGBtKtWzeWLFnSEGEKgiAIgiAIgnAbEA2gNTW6IkS3sx9//JFt27Zx+PBhrK2tKSwsZN26dQ0dliAIgiAIgiAIDUQvMtAaRAJai2bPnk1YWBjW1tYAWFtbM3369AaOShAEQRAEQRCEhiK64NbUqBPQdzdFEJlau9WkAtyteXtM+1verrS0lKKiIry9vWs1HkEQBEEQBEEQGi9ZtIDWUOtjQCVJ+kWSpExJks5ctuwzSZLOSZJ0SpKkdZIk2db2cevLtaq6iv9YgiAIgiAIgiD80+UtoOVafQNGcnuoixbQRcB3wOXVd7YBs2RZ1kmS9AkwC3j1vx7o37RU/lcODg7k5eXVWJabm0tQUBCWlpbExcWJVlBBEARBEARBEIBL84ACFJZrMTVSN1wwt4FabwGVZXk3kPuPZX/Lsqyr+vUg0LK2j1tfLC0tcXNzY+fOnYCSfG7dupW+ffsya9YsnnzySQoLlW7BxcXFogquIAiCIAiCIDRjl88DWlimu86azYNUF11HJUnyBP6QZbnDVZ7bBPwuy/LSa2w7E5gJ4OLiErRixYoaz9vY2ODj41PrMd+Kc+fO8eKLL5Kfnw/AM888w+TJk5Flma+//polS5ZgZGSEkZERTz31FFOmTGnQeBuCXq9HrVbu7sTExFBQUNDAEQm1obi4GEtLy4YOQ6hl4rw2TeK8Nk3ivDZd4tw2TcXFxVSozXlxVxkAb/QwxceuebSADhw48Kgsy8H/XF6vCagkSf8DgoGJ8k0cODg4WA4PD6+x7OzZs7Rr164WoxXqQlFREVZWVoA4Z01JWFgYISEhDR2GUMvEeW2axHltmsR5bbrEuW2awsLC8Oncnb6fhAKw8MFuDPRzbuCo6ockSVdNQOutCq4kSQ8AdwCDbyb5FARBEARBEARBaOwMhkuPC8u0DRfIbaJeElBJkkYArwADZFkurY9jCoIgCIIgCIIgNLSaY0BFAloX07AsBw4AfpIkJUuSNAOlKq4VsE2SpBOSJP1Y28cVBEEQBEEQBEG43egvT0DLRRGiWm8BlWV56lUWL6jt4wiCIAiCIAiCINzuLh99WFwhEtBabwEVBEEQBEEQBEEQFPrLxoCWiARUJKCCIAiCIAiCIAh1RW+41AJaUqFvwEhuDyIBFQRBEARBEARBqCOXFyESLaAiAb1l8fHxdOhQY3pT3nnnHebMmQPAnDlz8Pf3JzAwkG7durFkyZJr7mv8+PH07Nnzin21aNGCwMBAAgICWL58efVzDzzwAKtXrwYgJCQEDw+PGn3Kx48ff8UExl999RWmpqYUFBTUWH78+HFmzJgBwG+//UanTp3o2LEjvXv35uTJk1eN9+jRo3Ts2BEfHx+eeeaZ6mO/9NJL7Ny585qvUxAEQRAEQRCaqxoJaKVIQEUCWot+/PFHtm3bxuHDhzlx4gQ7duzgWlOe5ufnc/ToUQoKCoiLi6vx3PPPP8+JEyfYsGEDjz76KFrt1cs129rasm/fvur9paWlXbHO8uXL6datG2vXrq2xfPbs2TzzzDMAeHl5sWvXLk6fPs2bb77JzJkzr3q8xx9/nHnz5nH+/HnOnz/P1q1bAXj66af5+OOPr/POCIIgCIIgCELzdFkPXNECSj3NA1pntrwG6adrd5+uHWHkv0umZs+eTVhYGNbW1gBYW1szffr0q667du1axowZg4uLCytWrOD111+/Yp22bdtibm5OXl4ezs7OVzw/ZcoUVqxYQd++fVm7di0TJ04kIiKi+vnY2FiKi4uZO3cuH374IQ8++CAARUVFnDp1is6dOwPQu3fv6m169uxJcnLyFcdKS0ujsLCwusX2/vvvZ/369YwcOZLWrVuTk5NDeno6rq6uN/t2CYIgCIIgCEKTd3EMqJmRWowBRbSA1prS0lKKiorw9va+qfWXL1/O1KlTmTp1ao1utpc7duwYbdu2vWryCTB48GB2796NXq9nxYoVTJ48ucbzK1asYMqUKfTr14+oqCgyMjIACA8Pv6Ib8UULFixg5MiRVyxPSUmhZcuW1b+3bNmSlJSU6t+7du1a3RorCIIgCIIgCILiYo9IK1ON6IJLY28B/Zctlf+FJElXXX6trrZXk5GRwfnz5+nbty+SJGFkZMSZM2eqk8Ivv/yShQsXEh0dzaZNm665H7VaTd++fVmxYgVlZWV4enrWeH758uWsW7cOlUrFnXfeyapVq3jqqadIS0vDycnpiv2FhoayYMEC9u7de9Ov5SJnZ2dSU1NveTtBEARBEARBaMoutoBamWrILals4GganmgBvUUODg7k5eXVWJabm4unpyeWlpZXjOcEOHToEIGBgQQGBrJx40ZWrlxJXl4eXl5eeHp6Eh8fX6MV9PnnnyciIoI1a9YwY8YMysvLrxnPlClTeOaZZ5g0aVKN5adPn+b8+fMMHToUT09PVqxYUX0MMzOzK/Z56tQpHn74YTZs2ICDg8MVx2nRokWNrrnJycm0aNGi+vfy8nLMzMyuGacgCIIgCIIgNEf66hZQI9EFF5GA3jJLS0vc3Nyqq77m5uaydetW+vbty6xZs3jyyScpLCwEoLi4mCVLltCjRw9OnDjBiRMnGDt2LMuXL2fr1q3Ex8cTHx/P0aNHWbFixRXHGjt2LMHBwSxevPia8fTr149Zs2YxderUGsuXL1/OO++8U32M1NRUUlNTSUhIoF27dsTExFSvm5iYyMSJE/n111/x9fWtsZ/BgweTkpKCm5sb1tbWHDx4EFmWWbJkCePGjateLzo6+prdegVBEARBEAShubrYUdLKVEOl3kClztCwATUwkYD+C0uWLOH9998nMDCQQYMG8fbbb9OmTRsef/xxBg4cSLdu3ejQoQP9+vVDpar5FsfHx5OQkFBj+hUvLy9sbGw4dOjQFcd66623+OKLLzAYrv4fVZIkXnrpJRwdHWssX7FiBRMmTKixbMKECaxYsQJ/f38KCgooKioC4L333iMnJ4cnnniCwMBAgoODATAYDMTExGBvbw/A3Llzefjhh/Hx8aFNmzbVY0W1Wi0xMTHV2wmCINwKWZY5GJfDtsiMWxrOIAiCIAiNwcUuuNZmRgCUNvNxoI17DGgDCQgIIDQ09IrlkiTxyiuv8Morr1xzW09PzxrFey46duwYAD169KixPCgoiKioKAAWLVpUvTwsLOyq+y8uLga4alfgL774ovrxQw89xO+//87DDz/M/PnzmT9//hXrR0ZGcuedd1Z3rQ0ODubMmTNXrPfHH39w1113odGI/06CINy6A7E53DNfuQG35KHu9Pe9coy6IAiCIDRWF+cBtTZVrpWLK3TYmhs3ZEgNSrSANlOPP/44JiYm112nQ4cONZLWa9HpdLz44ou1FZogCM3Mnpjs6sd7L3ssCIIgCE2B4bIxoACllc17HKhosmqmTE1NmTZtWq3s6+67766V/QiC0DwdjMuhq4ctRmoV+2NFAioIgiA0LRdH0lmZXGoBbc5EC6ggCILQYEoqdJxKLqBXGwf6+DgSkVrIgr0XKNc277vDgiAIQtOhv2weUFD+9jVnIgEVBEEQGszBuBz0Bpme3g4Ma++CqUbN+39E8u6miIYOTRAEQRBqhcFQswtuc5+KpdYTUEmSfpEkKVOSpDOXLbOXJGmbJEnnq/61q+3jCoIgCI3PXxHpWJlo6OHlgL+rNWffH8GTA9uw/HAS649fWbBNEARBEBqbqvyzugquaAGtfYuAEf9Y9hqwQ5bltsCOqt8bLUtLyxq/L1q0iKeeegqAd955hxYtWhAYGEiHDh3YuHHjFdsvWrQIJycnAgMDCQwM5P7772fjxo18/PHH1fuYM2dO9bqpqal1/IoEQRDqn05vYPvZTAb6O2OsufTn6PkhvnT3suf1daeJySxuwAgFQRAE4b+7ogtuM5+GpdYTUFmWdwO5/1g8Dlhc9XgxML62j3s7ef755zlx4gSrVq3ioYceuuocnpMnT+bEiROcOHGCJUuWMHbsWF577cq8/N8koDpd8/5PLQhC4xCekEduSSXD27vWWK5Rq/h2ahfMjNQ8+ms4RxPyGihCQRAEQfjv5OppWJQW0KLy5n2tXl9jQF1kWU6repwOuNTTcRtUu3bt0Gg0ZGffuKrj5a2oF61evZrw8HDuvfdeAgMDKSsr4+jRowwYMICgoCCGDx9OWprytoaEhPDcc88RHBzM119/XSevRxAEoTb9FZGOsUZFiN+V8366WJvy7T1dyC2pZMrPB8gsLG+ACAVBEOpOekE5+ot9M4Um7eJ5NjdWY29hTFJuaQNH1LDqfRoWWZZlSZKu+WmTJGkmMBPAxcWFsLCwGs/b2NhQVFQEwFcnv+J8wflaja+tTVue6/zcddcpKyujU6dO1b/n5eUxcuRIioqKqKiowMjIiKKiIo4cOYIkSZiamlbHDFBeXs6KFSvYvXs3oMzJKUkSlZWVNfYxfPhwunTpwgcffEDXrl0pKyvjiSeeYMWKFTg6OrJmzRpeeeUV5s6di16vp7i4mNDQUIAax2sIer2+Ooby8vIrzqPQOBUXF4tz2QQ1xHmVZZmNR8toZ6fiyIG911zvkfZqPj2iZc22fbRzUNdjhI2f+Lw2TeK8Ng0pxQbe2leGj60Kf3s1/VpqkCpLmbVoGyoJBrTUYKyWGjpMoRYUFxcTmXIWgCOHD+ForOPo+RTCwv7ZYbT5qK8ENEOSJDdZltMkSXIDMq+1oizLPwM/AwQHB8shISE1nj979ixWVlYAGBsbo1bX7gWJsbFx9f6vxczMjFOnTlX/vmjRIsLDw7GyssLExIS5c+eyatUqrKysWLlyJdbW1jW2NzU1ZcqUKXz33Xc19nHx2CYmJpiYmGBlZYVarcbCwgIrKyvOnDnD2bNnmTBhAqAkeW5ubtXrTZs27Yax15eioqLqWExNTenSpUsDRyTUhrCwMP75mRQav/o+r0XlWp7//QQ55aW8Oro9Id1aXXPdNrmlfHokFHuPtoR086i3GJsC8XltmsR5bRpmrT2NWp1MYrFEVJ6Wg1kqzFATX1gJQId2fkztLr7zmoKwsDB8XdrA6VP06tWTY+WxbDmTxoABA5Ck5nmTob4S0I3AdODjqn831MZOX+3+am3sptY9//zzvPTSS7W+X1mWad++PQcOHLjq8xYWFrV+TEEQhNq24nAS289m8tRAHyZ0bXHddd1sTFGrJJJyy+opOkEQhLqVV1LJ2mPJ3Nm1Be+O7UBcdjEvrzpFem4lX08J5PO/o9lyJv2KBNRgkDkSn0t3L/tmm7g0VheLEKlVEj7OluSXaskpqcTR0qSBI2sYdTENy3LgAOAnSVKyJEkzUBLPoZIknQeGVP0u3AQrK6vqrqx+fn5kZWVVJ6BarZaICDFXniAIjYcsyyw/nEhQazteGu6Hkfr6f4Y0ahXutqYkNvPxMoIgNB3LDidSoTPwQG8vjDUq/F2t2fR0Xz4bYM64wBaM7ODK/phsCkq1NbbbciadyT8fFIXZGiFDVQKqkpQEFGjWVd7rogruVFmW3WRZNpJluaUsywtkWc6RZXmwLMttZVkeIsty8+30fIseeOABHnvsMQIDA9Hr9axevZpXX32Vzp07ExgYyP79+xs6REEQhJt26EIucdkl3HMLXcs87M1FAioIQpNQrtXz64EE+vo44ud69WFTd3RyR2eQ+T08EbhUQXV3dBYAJ5Ly6yVWofYYDCIBvVy9FyFqCoqLa/6HeeCBB3jggQcAZQ7PG7l8/Rvt48477+TOO++s/j0wMLC6eNHlREECQRAag+WHE7E21TC6k9tNb9PKzpxVR5M5mZRP51a2dRecIAhCHZvzVxTpheV8MbnzNdfp2NKGPj4O/Lw7jsIyHQv2XsDH2ZLTKQUARKQW1le4Qi25WOxYrZJwMVe63eYUVzZgRA2rvqZhEQRBEJq57OIKtpxOZ2LXlpga3XwBuVb25ugNMuO+38eF7JI6jFAQBKFu6A0yL606yfy9F7i3hwe92zhed/0XhvpRWK7ju9AYerVxqE4+VRKcqXosNB766hZQZWiJhbGawnLtDbZqukQLqCAIglAvPvrzHDIy03q1vqXtJnRpwbn0IjadTCX0XCZefb3qKEJBEIS6sfxwIquPJvPoAG9eHOp3w/WDWttxaNZgckoqaeNkwaELubyzMYJOLW1YfTSZ0kod5sbiMr6xqB4DqlKKR1mZGlFY1nwT0EbZAnqxL7xw+xPnShAEgPMZRaw5lswj/bxp42R5S9u625rx7dQutHGyIDTqmrN4CYIg3JbKtXo++yuKXt4OvDbCH2PNzV1+21kY4+NsiSRJ9PR2YOtz/RnZ0Q2DDDvOiu/CxuTyIkQA1mYaisp1DRlSg2p0CaipqSk5OTkisWkEZFkmJycHU1PThg5FEIQGtuOccrF0fy/Pf72PED9nDsXlUlapr6WoBEEQ6l5EaiEFZVqm9/b8z9On9G/rRFtnS77ecb66W6dw+9MblH/VFxNQUyPRBbcxadmyJcnJyWRlZTV0KMJ1lJeXY2pqiqmpKS1btmzocARBaGC7orLwd7XC1ebf35Dq4+PAgr0XOJWcTw9vh1qMThAEoe6cSs4HoIuH7X/el1ol8cJQXx7/7RivrTmFm40pm0+n8e7YDmQUljOhS4vqbp7C7eNiC+jF+w/WZkZkFpU3YEQNq9EloEZGRnh5ifE/t7uwsDC6dOnS0GEIgnAbKCrXEp6Qy0P/cexmYCs7AI4niQRUEITG42RSPq7WprhY106PsJEd3XhqoA/fhcYAYKSWuG/BIQAuZJcwc4A31qZGtXIsoXZcnIZFrbrYAqohJrP5dsFtdAmoIAiC0LjM2x2HVi8zqsN1pl4pSofKEnBoc81V7C2M8XQw53iimIRdEITG42RyAZ1a2tTqPl8a7seYzu4UV+jQG2SWHkygQqfnu9AYvguNIai1Hb/O6C4KFd0mqqdhqR4DKrrgCoIgCEKdyC+t5KfdcYzt7H7tOTyjtsKKe0DWw72roe3Qa+6vi4cd+2KykWX5P4+lEgRBqGvZxRVcyC7h7uDaH47k52pV/bi7lz16g8y+mGwOXcjh+9BYfj+SxIN9RK/B24FelvnK6DukGCPwHYaVqVKEqLn+LWt0RYgEQRDqk1ZvYMRXu/lyW3RDh9Io7T6fTYXOwAN9PK++QkUxbH4RHH3BzhN2vAsx20F/9a5JXT1sySyqICGntM5iFgRBqC17z2cD0Nfn+vN+1ga1SqK/rxMvD/enm6cd83bHUakz1PlxhZtg0DFevR9p2d2AUoRIb5ApbaZF9UQCKgiCcB07zmZwLr2I70JjOJtW2NDhNDphUZnYmRvRuaXt1VfY9QkUJsOYr2DAa5B+GpbeCfMHQfRf8I+K5wN8nQHEdCyCIDQKu89nYWduRAf32u2CeyNPhPiQWlDOhhMp9Xpc4epkfc3uttZmyhjd5toNVySggiAI1/HboURcrU2xNTPi9XWnqwsJCDemN8jsjs6iX1un6sILNaSfgQPfQ9f7waMndJ4CD++A8T9CSQ4smwSLx8Cah0GrVAv0cDDH28mC0ChRCV0QhNubLMvsOZ9N37ZO9V6ZNsTPiXZu1vwQFku5tnm2st1WDP9IQKuKRBWWNc9CRCIBFQRBuIb47BL2nM/mnh4e/G90O44n5rP8SGJDh9VoLNofT3ZxJaM6utZ8wmCA2FDY9CyY2cKQd5XlkgQtgyFwKjx7Aga9AfF74PQqSNhXvflAP2cOxuVQ1EzvHAuC0Dgk5ZaRVVRBT2/7ej+2JEm8MtyPCzklvLjqJLIsbp42JMlQM9G0NlPK8IgWUEEQBKGGZYcTUaskJndrxYQuLejuZc8Xf0eTW1Ip/pjfQFZRBZ/9dY7B/s4Mb39ZAirLsPU1+HU8pITD8I/A/CoXZ2oj6P8yvJ4KKiO4sKv6qdGd3KjUGfjjVFrdvxBBEIR/KSK1AICOLeq3++1FA/2deWGIL5tPpXH4Qm6DxCBUubyugSxf1gLaPBNQUQVXEAThGtYfT2Gwv3P13G1vjG7H2O/20fX9bdiYGfHqCH/u6eHRwFHenlaGJ1GuNfD66HaXKvzJsjLm8/BP0ONx6Pk42LUGQGfQUaYro0JfgbnGHDONmbKdsQW06g77vgZdJQx9ly6tbPF1sWTFkSSmdhfvvyAIt6czqQVoVBK+LlY3Xvk6iiqLOJ11msjcSJKKkkgvSadEW0KlvhITtQmWxpa4W7jjYe1BR8eOBDgEYKpR/m490t+bxQfi+fSvKN4d254ODZQMN3uXd8GtKKoeA1pU3jy74IoEVBAE4SqyiyvILKqgh7dD9bJOLW1Z9GA3IlIL2R2dxRvrT+NqY8Igf5cGjPT2YzDILD+cSC9vB9o4WSoLywvg9/soSNjL8fYjOensSvyJr4gvjCelOIUyXVmNfaglNTYmNnhae+JlbUJba0uCjs/H19IZVb8XuDuoFR/+eZaEnBJaO1g0wKsUBEG4vjMphbR1scLUSH1T66v05XB4HuQnkB10P5vTD7AzcScnsk5gkJVqto6SEW52PliY2GBjYkOFvoKcshzOZJ8hvyIfAI1KQweHDgxtPZThnsN5bogvb6w/w9jv9rL04R70blP3FXmFmqTLixAVZ2Blqtw8LRAtoHVPkqTngYcBGTgNPCjLcnl9xiAIgnAzojOKAPB1sayxPMTPmRA/Zx7s48mknw7w9LLjrH2iT4352Jq76MwikvPKeGZwW2RZJjovmm07XiO0Ipro1i2hNAJNZBStrFrR2ro1vdx7YWVshbnGHGO1MWW6Mooqi8grz+NCwQV2VGaxxkHppmsds4Du5TF0ch4MKgiLymJ6b5GACoJw+4lILSDEz/nqT6afUYYiWLpCYQo4tqVHRjQRFDPf1oawtA3oAD87Px7xv48gK086nN+N1bElMOwh6P3UFbvMKcvhVNYpTmSdYH/qfj4L/4w54XMIdg3ms+kT+eFPM+6bfwhfFyu6trajq4cd/do6VvfyEepOjTGgRenY2ftgZaIhqupao7mptwRUkqQWwDNAgCzLZZIkrQSmAIvqKwZBEISbdT6jGOCaXafMjTXMv78bQ7/Yxbw9ccy5u3N9hndbOxKfh6QpJMWwhYkbtxCTH4NKlulq4cLTHe+jq3NXOjp1xERtctP7TC9J58j5Pziydzb70o+wPXUPVr4a5kV3xNvjEXq790aturlWBkEQhLqWVVRBdnElAW7WVz5ZnAXLp4CkAlMbcAkgKjeKL50d2WdkhbXalGk5mUy0bYdnmSn8+SFK202Vk8uvmoA6mDkw0GMgAz0G8nzQ81wouMDW+K1siNnAe4dn4dTKhWFtJlKcE8imE6ksO5SIlYmGFY/2pH09TxPT7Mg1W0DVKonuXvYcjM1puJgaUH0XIdIAZpIkaQBzILWejy8IgnBTojOKsDbV4Gx17STJ1caUIQEubIvMQKsXk33Lssz+1P0sOP8/LH0+4pez32JeUcwb2bmEWvdk4V2bmdlpJsGuwbeUfAK4WrgyJvBh3nMfwraEJJb0/Yy2pkPJ15/niR1PMHrdaBacXkBRZfO8mywIwu0lKl35LvL/Z++YsjxYcQ+UZMPUFRTcs4z33Vpxt1EeR40lngh8gr8mhfJCn7fxTI2AhP3Q5xkY+AY4tYNeT0HGGdj2FmjLlCmqcuOUMfb6muMJvWy8eLzz42yesJlvB32Lm4UL+wp+oMD+Iz5/QGLTU32wMtXw2NKjYoqxOibpa7aAAvT0diAuu4SMwubXGbTeWkBlWU6RJGkOkAiUAX/Lsvx3fR1fEAThZsVnl3AgNgdfF6tLBXSuYUQHV9YdT+FgXA792jrVU4S3lwp9BX/G/cmSyCXE5Mcg6a1opRnNd/4eeO/4CFwDYcI8ZZqV/2rQG6jO/kGXA/N5q/88xs/tw72DikiXQ/nq2FfMPz2fyX6TuS/gPhzNxDgnQRAaxrn0QoBLwzO05UoxtaOLoCQL7pzPDn0e760fS35FPve2u5eORR0Z1XmUsn7wQ8rP5Qa8rBRjqyxW9nViGSBBSSbYeEBRGnR/BJwDlJ+WQQCoVWpCWoUwoOUAdibt5Ntj3/Li7hfp5NiJ+/o/yqebijielE9QazsAMovKqdAaaGVvXg/vVPMgXV6EqFBpf+vVRqkxcTAuh3GBLRoirAYj1ddUApIk2QFrgMlAPrAKWC3L8tJ/rDcTmAng4uIStGLFinqJT6hdxcXFWFpa3nhFoVFpLuf1nf1lpJUYeLCDCT3drn+frlIv82xoKe0d1DzVpXGOo/m357VUX8ruot3sLtpNkaEIdyN3gk0H8tuRdnzrvosxOQsotPIhMuAlys3cai3eFsl/0DZmHvEedzE9/S60epnXuptRICWzrWAbJ0pPoJE09LTsyRDrIdhr6n8OvttBc/m8NjfivDYOC05XcDJLzzeDzJEMWroeexWr4lhy7ToT6Xk3i7WnOFhykJbGLbnX4V5aGre8pXNrm3cat7S/UBl0lJm5YFMQRaWxNU7Zh6rXOef3NOluQ67Y1iAbOFxymI15GykxlFCR058+ZsOZ1s6SyBw9nx4px8IIvh1kjqo2bhw2c8XFxYRHxfFO0ZsAZDn2IqLDa+gNMg//XcqYNkZMbGvcwFHWjYEDBx6VZTn4n8vrswjREOCCLMtZAJIkrQV6AzUSUFmWfwZ+BggODpZDQkLqMUShtoSFhSHOXdPTXM5r1s6t3NPTk9fGtL+p9R/UnuOHXbG0ah98qeoryl1NK1PNbT+25lbPa355Pr+e/ZVlZ5dRrC2mX4t+3N/+fnq49uCXffF4sYM7cheC3yisJy+lZ22PzZQHwKZKPI8t5rO+I5myw4x3DuvY9PRdTLOdRnxBPAsjFrIxdiMHSg4wyXcSMzvNxMHM4cb7bkKay+e1uRHntXH44sxeOnkYERLSA06ugOJYmDiPtBbt+SDsRdJK03ik4yM83vlxjNTKlBy3dm5DgKevXKwtg+IM2PQc/tHf4x/YE9rdccVqgxjE4xWPMyd8DutZz8HK0ySfu5/8XKU6a4kWrLw6082zed7Aq01hYWE42VlDEaDS4GRcUX2enQ5sx8zOmZCQTg0aY32rzzGgiUBPSZLMJaVP22DgbD0eXxAE4YaKyrWUVOpxs7n51syH+nphqlHz9LLj9Pt0JzvOZhAalcmUnw8y+pu9LDuUSFxWMTMWHeHxpUdJKyi78U5vQ9ll2XwR/gXD1wzn51M/08u9F6vHrGbukLn0dOuJJEnsOJvBLMvNSGoTGPMN1EVhIEmCkZ+Cgw/dz7zH1pkdqNDqef73E8iyjKeNJ+/2fpctE7cw3mc8v0f9zqi1o/jhxA+UaEtqPx4BgD9OpRKTWdzQYQhCg9MbZKIzipTut7IMB38ARz/WmRlx/5/3o5f1LB6xmGe6PlOdfNYaIzOw84TJS8G9C6y8H7bOAsOVdQpsTGx4v8/7zO71HbZmRqSYfkWeyXrmTQ/EWK1i65n02o2tObtYhMjOCwqSqxc7W5uQUdT8xoDWWwIqy/IhYDVwDGUKFhVVLZ2CIAi3i/QC5Q/BrZSld7Q04dO7OhGZVkhSbhmL9sfz4eazeDla0MXDli+3RzNh7n6OJuaxNSKd5YeT6ir8WhMWlcn+2GwA0orT+PDgh4xYM4LFkYsZ0GoAa8eu5YuQL/Cz96veJrOonPz4EwzR7oLgB8GyDsfEGpnC+B+gKB3fLVOY7x/O8QuZxGZdSjBdLVx5u9fbrBu3jj4t+jD35FxGrR3F8nPL0Rma5+TfdeVEUj5PLTvOnT/s53RyQUOHIwgNKjG3lHKtQUlAI9ZiSDvBV14deWv/W3R16crKO1YS6BxYt0GYWMJ9a6Hr/XBwLmx4EuLCrrrqGN8BbJ+ykV5OozBx3MX82Bfo1lbPH6dSRYG9WqIy6JUH9l7KmF1t1bWGlSmZhRUNGFnDqNd5QGVZfht4uz6PKQiCcCvSq6rRudmY3dJ2Yzq708bJksX74/k9XEkw590fjEYt8eDCI7RxsmDhA915efVJ1h1Pxs3GlDGd3bE0qdev4ZuSV1LJo78epVLKJKjzcWJLd4EEY9uM5aEOD9HaunX1uuVaPefSi/B3tWLZvhg+UM9DNrWB/i/XfaCtusOkJfD3/+gV/RmrjL0JO9MWn0EBNVbzsvHii5AvOJ11mi+PfcnsQ7NZGbWSV7u/Sk+3nnUfZzPw1fZobM2NsDTRcM/8g4zu6Mb03p60u9oUFILQxJ1LUwoQtXMyRrv6Dd5s1YbN2Ye52/duXu/xOhpVPX3vm9nCHV+CkTkc/B5OLgO/UdC6D7i0hxZdlWlgADONGfNGf8yOhKG8feBtytXvk2+4k3HfmeDnasXnd3dGpRLjQf+t6iJEdl7Kv4Up4NAGZ2tTTibnN1hcDeX2u/IRBEFoQGlVLaCul7eAVpaAxgxU1+80EuBuzZjO7vwenkTvNg4MaadMQL74oe4EtrLFxsyI0Z3ceGtDBLPWniYpt5RXRvjX2Wv5t77eG4rKeSmW1qc5V6Smq/0I3BnJcOcANhzJw902mbuCWlKu1fPZZ+/hW3qC8HaT6XR+IV1VMTB6AZjX07ghvxHKz+nVBK6ZQdzRr/nbZAbnDv2Fa+chTBrcq3rVjk4dWTBsATuTdvLZkc945O9HGOwxmJeCX6KlVcv6ibcJOpaYR1hUFq+M8GNcYAueXnaMNceSKa7Q8d09XRs6PEGod+fSi5AkcM/ZzuMWOg5ptDzb9VlmdJhxw8rqtU6SYMRs6PciHP4Zwn+BqD8vPgmtesCoT8FNmct6cOvBtHdsz/Ohz3PG8CtxOclEHh9KYZmWpwb50MXDrn7jbyKki71u7KsS0IJkJQG1MiG7uBKt3oCRur5nx2w4IgEVBEG4TEZVAupsXTVPZV4CzBuojKm5c8GlPx7X0NPbnkcHeDO1m0f1hcYA30tdUe/o5M7WM+nkllSy9GACTw70weI2aAU1yAb2puxl7vEFROQew9pKZlKpDkNuLzZE++EkbebHyFgmlK5Cj5qwrSBZu/Fm5e/oNGrk6D0YSXouBL+JV8e76v8FdLyLiD1rGZfxO9nbtjGMHEp2f0tk5XuY27rg2WsCAJIkMdhjMH1b9GVxxGLmn57PuPXjeKDDA8zoMANzIzHtwM06GJdDeHwuf55Ox87ciOm9PLEw0bD2iT7MWnuatceSmb8nDpUkMbFrC2zNm2aVR0H4p6j0Ilo5VfLI6S+4YGrC7D4fMMZnXMMGZeEAA2cpPyU5kHYCksMhfAEsugOePgqWyk1TVwtXFo1cxOu73uNvNuLlXsDhqIk8trSAPa8MwljTfBKl2qKS/9ECWjUO9OJwn+ziilvuedWYNfxVj3DbyC6uwNJEg6lRHRQNEYRGIq2wHHsLY+VzUJYHK6eBXgvZMfBTfxj3PfgMgdxYsPWo7r50kUatYtbIdtfcv72FMcse6cmxxDwmzt3PyvAkHuxz/aS2LhVUFBBaGMrn6z8nvjAeY4MV9+Qb8WRxItae/SFzLS+brAWgtNwEc3UFBlQYtKDJMZAku5Aw6Ds677yfP02GMHb0iw32Whzv/paob8/gRyI7A94jIPIrAg69ikGWyM46TlGljHnACFwC+mAkGfNAwMPEXvBna+oCfj71MxtiNvBS8EsM9xxe/60UjUhOcQV/R2bwv3WnMchgbarh7THta9xIGdXRleWHE/lgs1JrcO3xZFbM7HVbdjkXhNoWkR1Fuf1cUg3lfO8yiN4NnXz+k4UD+AxWfjrcCXN7wpoZ0P1RcPSF06swsW3FnIEfsCq6M7MPzcatXR7nT03iz9NpjO/SvOasrA3VLaB2niCpITsKAJeqm90ZhSIBFZqh0kodI77aja25MUse6o67bfP5EAjC5TIKypXut7IMv02CzLNKNUEnf1j9kJKQIgEyqIzAOwSGvgcuATfYc01dPewIbm3Hgr0XmNazNZp67HpjkA2cyDzB2vNr2Rq/lQp9BZ2cOvFB7w/ptPRFXDVlmI2bC50mQdRWKEwhTzbHavMTxKq9aPPyLo7F5xK+9E1KvUfwVJ8hPHl+Jff082/QxM3FyYFv/L8n8uxpFo15hC3WHUk4GcqY0g0EHPsaR4Az35DiNoTE7GLyDOZ0r6zkIXUS3xh3I719IS/vfpkVUSuY1X1WjQJLgkJvkLnj272kFZTTxcOWJQ91x8r0yiqePb0dGN7ehf6+Trham/LIknC+2hbNG3fc2udEEBqbQylHybP5Ejtk5qdl4De+4W7K3RRHHxj8Juz8EC7sBpUGDDpAQnJpzyS/SbS0aslLYS9h3WYus3dU0MfnPpysTBo68kZFJVcloMbmSv2CqoJQF1tAMwqbVyVckYA2c1tOp7HscCKVOgPZxZUUlev4YHMkc+8NaujQBKFBpBaUK1OwZJ2D5MMw/CPwHa48+eCfcOA70FWCY1tIPQ4nl8PyyfDobjC7bGyMLEPMDsiPh4DxUJqjzAWXdwEGvQkObXikvzeP/nqUL7ZFcyAuhx/uDcL1FqZ/uRU6g47T2afZnrCdv+L/IqM0A3ONOePajMOryIv7ht1Hypk9tJAyOdLxQ7p1mqRs6DcCADtgVZIKt9a+tDG1IdjfhgvjP2K4pz3GGhXzHu5fJ3Hfqtcm9iS9IBAbcyOmjBwEIwcxe/UIPoo8yfQxQ8na+jFDUrfhhZpgCpDUMuU2Pnydv47dtqvJ9s/h2+PfMumPSdztezeagpGcTNAyvbcnFTo9Sbml3BnUslndqb7cscQ80grKeXWEPw/19cREc/UeM0ZqFT9NuzT3+LjAFvx2KJEnB/pgZyG64gpN0/7U/Tyz81lknQWLCjNp07KP0uJ1u+vzLPR8EsJmQ06s8jdq0WjY9CzM2E5v994sHbWUR/5+jAy+I2RuNj1dBokxobegugVUZQRtBkPoB1CchYu1UqgtIad5TREmEtBm7p1NEVTqDOSVaglqbUfHFjYsP5xIUbn2qne1BaEpk2WZhJwSere2gtOrlYXtJ1xaQWOiFHK4qONdyvO/jID5Q2HQGxC5Hno8BmfWwuGflPVCP1ISUJVa6XqTFQ2m1gwN+R9ejhbMDYsF4M/TaTzUt3a64xpkA4mFiRzJOML+lP0cSjtEkbYIjUpDX/e+PB/0PANbDcTcyJywsDAAKk+vo1JWY9ZhzFX3efedk2v+HtyqVmKtTVamRld8d702sTeV43piaqSmJOAnjiXm4eVoQULSCQw6HT6+7SmYE0j/nXeRILvwpG1fzga3YHX0aiTdOtrle/Pi0rspwQKAnecyWfN472bZTXfrmXSM1Sru6+lxzeTzap4IacP6Eym8vPoU5Vo9TlYmvDzcT/S2EZqMHQk7eHn3y9gZtcQjqhttNHNg2DsNHdbNU2tg8FuXfh/zFSyfAh97gGtHvCf8xKoxy3n4r6c5r1pKeH42s9aNYeuzt8fNx9tddQuo2gh8BikJaFwYTp3uplNLG1YfTeaRft7N5u+KSECbsdJKHRmFFbw41Je+bR1xtTElNV+Zw3D72QwmdKn/qpDFFTrOphXSzbOeKmgKwmXSC8sprdQzM/45yD8OLYLB2u36G7UMhmnrYO1MWDVdWRa1BXTlyh1l3+HIfzyHttPdVPZ4jMq4nag3v4gaFZqV9/Jqpy94bLcplmo9W86k0bW1HYGtbG8qXoNsoLCikNyKXDJKMkgsTCShKIHzeeeJyImgqLIIABdzF4Z6DqW3e296uffC2vgqU2PIMg4JW9hn6EC3Vk1rfI9KJWGqUpIlCxMN/dpWFYWy6129TtyoZZSfWINz8TmmFK6CnRBo0ZVNVskccTlHW7t3eKLIhC6SBbOSh7E/1o82TpZU6gy0sjdr8hcNxRU6pv9ymKMJeYT4Od3yDcq2LlY8PdCHb3bG4GRlwrHEPM6kFLD68d7YmImbnULjtjF2I2/te4v2ju3x1j1LJ9VsZCMLJP/RDR3av+c3UukBlHYCzv4B3wVh33YYKyYt4e2D7/FH3B/EF2QQl9UJbyfbho72tledgKo04BZYYxzofT1a88qaU+w5n01/3zqcP/s2IhLQZiwxtxSA1o4W1V0oXKxMcbU2ZVtk/SegpZWXLnAWPtiNVnbm+Dhb1msMQvMWl1WCGeU4F5yEtsNgyDs33EaWZTKdfYm9ay4XojcSpy0gM2E3uVZtyCk5Su6B7ZTZ6CBjM2zcrGzU+rLPVta7WLUDjSwTLRsxbZsGK1MzLIxNMFIZVf+oVWq0Bi1avRatQUuZroyCigL0sr5GPGYaMzytPRnhOYIOjh3o7NQZb5ubuKuadgLr8lT2m0xgYDMsFBPUvR907wdA1N515O9bwISSPYwvgVVdpjM/fw8vOugYri3ireJv+WKZEacr3MjSmzE8yJ9P7+rU5JJQWZaRJIlV4Uks3BdPVEYRzw/xZWLXa9ygkGVlyodreHaIL21drOjj48i59EKm/3KYx349yuKHuouqmkKjtezsMj46/BE9XHvwzaBveHJROK+pDyEFjAdji4YO77/p9YTyb24cHF8Kez7HeOtrzB7xCXZGLfg16ice3/koK8f/jI2JzfX31cypDJe1gKrUYOUKhamAMo/4t6HneXLZMdY+3pu2LlYNGGn9aH5XGUK1hBwlAfV0uDTtgEol0auNA3vOZ1VffNSH9IJyXllziuOJeVibanhw4READs4aXGdj4gThn+KyiukgxSPJBgieoUzU/Q8G2UBEdgRHMo5wLOMYxzOPU1hZWP28tbE1rm7tcTB3wcPMAXtTe8yNzDFWGWOsNsZIZYSMjM6gQ1tZjO74r+gLU9FKUCFpMGAgQhuAl7c3WlmH1tgCrUGLzqBTklG1kpCaqE2wN7Wv/nEyd8LDygNnc+db/txqtIVwdD061CS7DPrP72Nj59d3Agcdg8hY3o8MHJh4x1eMkStYdGYRC87MJ6yVKw/nz+XjgiKMZYnNp7qz0uEDJg/q1tCh15rvdp5n3p4LuNmYci69iDZOFsy5u9O1b0ymn4ZlU5SCJkPeqbrDX/P/oVolMaazOwC92zjy6V2deP73k7y65hRfTOrc5BJ4oWmTZZl5p+fx7fFvGdhqIJ8N+AwjyRjn1FAs5FLoPPnGO2ks7L2V7rl6Lez/BunsJl7xGUJ40R2clbcyfct0fhjyA26WN+gx1IxdagGt6vFh7Q6FKQCYGatZMbMXIZ+FsuZYCq+NvP3mB69tIgFtxi4OeG5tX/MOXQ8ve9YdTyEuu4Q2TnXfAnkwLocpPx8E4JM7OwLw6prTABy6kMO4wKbVHVC4fcVmldDN6ILyS4uu1cvLdeUcTDtIWFIYYUlh5JTnAOBp7cmQ1kPwt/enjU0bvG29cTB1uLULab+pSnEiazfY9BxZGleccvdB2j4AdPf/gca7Xy29wn+QZVj3KH1P/Q7ATrkb7m7udXOsRqabbysmaD7E1d6Gn9UqNJjxeODjjPMZx5zDn/K9tIPVTi150qItw09sIfrASzAw7LotgI1BQZmWjMJyvtgWTXBre86lFxLc2o7fHulx5ZjPvAQoSoPiDNjwtFLdMe0U/BwCSDD0XaW4yTVM6NKS5NwyPt8WjSzLpBaUM3tCR9HzRbjtybLMl0e/ZGHEQu7wvoP3+ryHkcqIyNRChulCKbVwwdyzjr63G9Kw96HNIKX4XvRWFmFKUO6jpGpWcd+f9zF3yFxRPfwa1JePAQWwclOKHVZpYWtGxxY2HL6Q0wDR1T+RgDZj8Tml2JobYWNec/xNdy9l/OXhC7n1koBuPJmKubGaVY/1or270oVjXGALun24nUMXchnb2V3cGRfqRWxWMY+YJoCZB1g6E5kTyZroNWy+sJkSbQmWRpb0bdGXkFYh9HLvhb1pLYxVNre/1M0pYDw2FeX8vWkJJ5ILeTD/W0y2vIl1vyeg3RgwqqWCLQY96Cvh3GY49TupbsPRdH+Ap3+v4F1x8Q8orXVv3z8ac+OaSZe7pTtfDPqKI+lH+PLol7yVfZwfvHyZlRFF6dJ7MPcbBG6doWW3RpeMGgwyk348QHRmESpJ4qspgVibGWGsVl3qImswwManIec8JB8B2aAsd/RVxkKbWMGxJcqYsdDZSrc9jQl0ngrdHlYeX+apQT4k55Xxe3gSAN/sOM83U7vU58sWhFuiN+j58NCHrIpexWS/ybze43VUkvL5OH90B+PUxynu/ILSzbIpajNQ+UnYj/nCkbwknWF10QsUWM/lns338+WAL+nv0fvG+2lmVLIOPSrUF/8uWLeA2J011unh7cC83XGUVuowN27aKVrTfnXCdSXmlNLa4crxCV6OFjhaGhMen8fU7h51GoPeIPN3RAYD/Zyrk08AUyM1XT3sWHYokV1RWWx8qg8OlmLOKaFuxWcW0tZwhlWu7Vn9x2QicyIxUZsw3HM4o71H082lG0bqOiyYIkkYm5ox7O5H6VGm5dsPL/BG1m+w9hEwsVG67Ny9CJz9IekIRG1WyuXf7IVO6EdK0pAbp7Rc6SrAvSvnfR5Fb9aBCsJp6yIS0IuCWl97eoFurt34bdRvbE/czpzDX/KMixMdSk/y8o4ddK2oQO73EtLgN+sx2v9uT0w2URlFtLA1Y5C/85UVapOOQNSfcGIpuHaEHo8r1RxlGVr1ANOq4la9n4b2E+HHPkpCqtLAX68r0xJN+Q00ptXJuSRJfDChA33aOnIwLocVhxN5epAPFToDrezMr7hBKggNSWvQ8r+9/2PLhS3M6DCDZ7s+e+kGuSzT6dSHZEkOOA26zef+rA2te0Pgvcw48Runk1zZoHoEs1YLeTr0CT7qN5tR3qMaOsLbikrWoZc0VP+1tnaHymIoL6z+7uzuZc8PYbEcS8inb1vHBou1PogEtJmSZZlz6UX0u8p/cEmS6NDChojUgjqNIbOwnOdXniC7uIJh7V2ueH6gnxO7orNIyS/jt0OJPDO4bZ3GIzRvSQXpaEwWMNHOnOLKBNoa2vJ6j9cZ7T366lVj65iNmRH7HCbxlmkv3hviBhHrIGYbLBgKHSYqk1jnxUPmWaU1c/BbsO8b5fdW3ZWL/Na9lLuszu0gbhfs+kRJBswdIPBe5Y9e3xeQDx7jfEYxAD5OTb/4QW2RJImhrYcS0iqEZzf9zL7cZUx3V9OuxIS3Dn9PBxMrpeXP6srvt9vRon0XaGkJO5/riXH4T7DsfSXRzIpS5gbMjFBWbN0HHtiMVtaRUpRCVlkWeekHya/IJ688j0pDJQbZgGHw05hqzLE0tsSydWecjv6K29xg3IpzMDe1hZ6PQ88nMFIbMbazOz297NlyOo07vt1Lhc6AkVri+3u6Mqy9a4O+L4IAUKIt4eVdL7MnZQ/Pdn2Whzs+XON5ffx+vLTn2djqVcaaNJMbeaO/gLwEvkqYy4cWHsRmG/GMiwuv7nmVzNJMprefLnqwVVHLOvSXp13WVcNdClOrE9BunvYYqSX2nM8SCajQNJ1LLyK7uIJebRyu+nwHdxv2nM+mXKvH1KhuupHsOJfJvpgcZvT1YmSHKweuT+vlSYifM+9uimDJgXgeD2mDkVpUShRqV0JhAgvPLGRDzEb09lqGlGmZPn4pnVy7NfgfzmAvR9YcK+c+6x74jh+iJAG7PoETy5Sk084LorcCktKVR2MGLgEQsV6ZBubwT8pz5g5Qmq38+8QhpTKjsXmNY53PLMbZykS0OP0LRioj5o57kjLdQyw4uYR5p+Yz1cKJnme+48Ej39Jr6GdIHSY2dJjXdSG7hJNRsey0fR/jLwqhsgjs20D0X2BiTWnLIE549+CYuQXRlblcWD+W5KJkdBfHNV1GQkIlqZAkCZ3hsuddq6YXsHXCDQ1+J7/BN3Ix/oEP0KXDPThbOzL33iBeXn2Se3p4sPVMOs//foJ1T/bBtxlUhRRuX+kl6Ty14yli8mN4s+ebTPKbVHOF3DjKd36CXjaDTnc1TJANwcgUpq2FsI+xyLuAV/QePkuCFQOH8fnRz0kvTefl4JdRN9XuyLdAaQG97H2wrqpvUpii9GoCLE009PByYPvZDGaNatcAUdYfkYA2U3vOZwFctQUUoEMLG/QGpZX0ZuckvFWRqYVYmWj436h2qFRXXuirVRKejhbcGdSS0KgsIlIL6ywWofmJyI5gwZkFbE/YjpHKiCD7ITxzfDkeXoOxdeve0OEB0N/XiV8PJjDsy918M7ULYzu3gYk/Q/9XIDNS6QKVHK4UNYjeqhR8samqUlqUAfmJsGcO5F6AkZ+AayewrDnH2OnkAr49Xs7pnFR6eIn5d/8LM40ZTwU9SnF2d345tZzzLQ/wqFk+/vtn8eCZxQwd/bPShdv89nuffws9xmLjT7DR5UCrHhTae3G883iOJu3maG4kkXnR6DJiUEtqPK09aWPbhiGth+Bp7YmLhQt2JnbYmdphZ2JXo5u6zqCjRFtCsbaYrNIs0krSSClO4XzeeaLSj7KnNAN95DyInIenQUVQi968O/Uueru3YGKXloz5bi+PLAlny7P9mvyYKOH2FJkTydM7nqZEV8J3g7+jb4u+NVcozYWfB2JRns+XujsZ07qZFXLTmMCQtwFIWPke3SI/x116ChdfW349+xuZpZl81O8jTNTNexiVuqoLbrXqFtCUGusNbufMu5siic8uwdOxkU/jcx3i27yZ2huTQ1tnS9xsrl7UpEMLpTvA8cS8uktA0wpp52Z91eTzcpeKIuWIBFT4z45nHmfuibkcTDuIlZEVMzrO4N529xL650466X+iouOYhg6x2tAAF/a8MpAXVp7g+d9PsOZoMj9NC8LU0UeZ7gLAb4Tyr8/gmhtbuSg/U1cov1+jNff5lSdIy9NzT3dPpvVqXUevpHkZ09GbH0MHUKkfwrQ+KexNWsCrFXF8umoQY4uKubP9/bQe8n5Dh6nQlnFu0xdMjvyJWCsDmztNJLwii+jcUOTQnRipjOjo2JEHOzxIsEswnZ07Y2F08xdFGpUGGxMbbExsaGHZgkACazxfXppL9K73ORaziXBjI/5K2cOatL2YSGp62fgysd9IftpqyY6zmdVTuAhCfQlNDOXVPa9iY2LDkpFL8LXzvXKlfV9BeQE/+85j/jlrnm3CScONmAdNhsjPaRH6PDMcu+HS5wnmnJpLTlkO3wz6plnPFaqW9Vd2wTV3VAq1dZlW/Td6SDsX3t0UyfazGTzcz7uBoq17IgFtpqLSC+njc+3+5S1szWhlb8a7myJRqyTu7+VZq8c3GGTOphUyKbjVDdd1tjLF29GCwxdymdm/Ta3GITQfxzKO8ePJHzmQdgB7U3teCHqBu33vxtJYGatjn7IdLRpM/IY2cKQ1tbI3Z979wXyzI4Zf9l1g3fEUpnb3QG+QKa3UYWV6gy6z1+lGHJ9dQkxmMff6G/PO2CvnPBX+nfbuNnw5uTPf7Yzh1+3urHliM+mZG1lzah5L1CoWpqwnaNluRrQayECvkbi4Bl5RHbaupZekczQ9nEO7PuCEPp8LnsqFoWlWOJ2dO/N44OMEuwTT0bEjppq6m4vZ1NyeTiO/pBNf8kBeAtrf7uJocQKh5uaEVZ4mLP8s1r4qvjjZBWObqQxoOaBO4xH+G71B5o31Z+jj48AdnRrvDQO9Qc/3J75n3ul5BDgE8N2g73Ayd7pyxfh9cOB7DJ0msy7JjQ4tNDe8qd6UeXi2ZZZ2Bu2leO7L3sH0DUdw9OjMm9mnm/1coSp0GC5vAVUbKXMmb3wKIjdA+/GA8jff10W56SYS0FoiSZItMB/oAMjAQ7IsH6jPGAQoKteSUVihzLVWXqhUwzSzgzUzwMgChr6L5OTHqkd789SyY3wfGsPU7h61Nv7SYJDZcDKF0ko9AW7/KO6iq4TCZGXS48t097Lnz9NpdTomVWh6ZFlmf+p+fj71M8cyj2Fvas9LwS9xt+/dmBtdGgOp3/MlA3JXcca0G4Gm9V9w6EZszY158452HE3I5cddsUzo0oL5e+JYsPcC+14b9K+7Jm4/mwFAoLP4TNW2CV1a0t3LgXHf7eWRJcdY/8Rk+necRlZRChu3PMn6gnN8GLeGD+PW0LFSyyD/SfRw6YZ/m+EYqY1rNRatXsu53HOczDrJqaxTnMw6SWpJKgCWkgFrnRszAicz0LMXAfYBdVvp+XrsWmP02D56Jh6gp4MPr8WGErnzDf4wllhhcZaXdr2EhcaC0d6judP3TgIcAhomTuGa1h9PYfnhRH4/kojeIDfKebxzy3N5dferHEw7yASfCbze4/Wr3/QoSIZV08HOkxeL7uFsWiEfjO9Q/wHfRjRqFfc/9Q7hF3L4dPNsbKUSHkj8G8cWfjyvzmjWc4Ve0QUXlGKAf/0PLuyqTkABBrdz4efdcRSUaq9bl0Fv0Dfa8bX13QL6NbBVluW7JEkyBsxvtIFQ+2KzSgCUOT5/GXGpsqGkVkrm/zoRHtuDq409j4e0YcbicP6KSK+1u5n7Y3N4/veTWJpolO61eh3E7lD6we/5EgoSocdjUJYHY78FjQljO7uz4kgS/1t3hs8nda6VOISGcSQ+l0+3nuO1kf4Eta6bsXAG2UBoYig/n/6ZyJxInM2debXbq9zpeydmmn90Oy/Ogp0fslvfCc2Ir+skntogSRIvDvNj+sLDvLjqJKeTC8gr1bIrKouRHW/tjnJ8dgn5ZVpWH03G18USJ3O5jqJu3lrYmvHTtGCm/nyQJ5cdY/FD3XGyasGMSeuZUZxJXOIediSFsjM5jK/j1kHcOswOvkVna2/881Lw6TQNn9YhuFq4YmdqVz3X4LVU6CvIKMkgvjCehMIE9ufs55ctvxCZE0mFvgIAVwtXOpk4cV9SJEE6NWeL2hPd4zOe63abJHMaY/AeAIDU9T7a+4+i7Xc9uSOnjHeN+hFnk8M6w3pWRq8kwCGAO9veySivUdU9GYSGk15Qzud/RxHgZo2VqYbnfz/Bb4cSebivV6OpZHwy6yQv7XqJ3LJc3u39LhPbXqd42NqZoC0nf9I61v2QyKP9vbmvpxjG0M7NGl8XKx49PxOVJHHknB8/pXzF4oCRPE4a07ZM45N+nzDQY2BDh1qv1LIO/T+TRZVKqTSefrrG4mEBLvwQFsuX26N5e0zAFQUR04rTWBW9ivUx61k6ainulo2vt0G9JaCSJNkA/YEHAGRZrgQq6+v4wiWxmcp0C/4mOUry2XW6MmWDZx+w9YAFw2DzC3D3IkL8nGnjZMGHm8/Sp40jdhb//c78ufRCAEJfCsHJygR2fwY7P1CedO8KFo5w6Efld4+e4DuC3j7uPDXQh+9CY5jWq7UYC3obyy+tZPrCI7w0zJf27jZ8tT2ae3p44O9qzZ7zWTyyJJxyrYHpvxzh52lB/LLvAk5Wprw+yv/G3UlvQKvX8ueFP1l4ZiGxBbG0smrFO73eYUybMRhfrVWpKAN2fYJa1rLR9Um+7Oz/n45f1/r7OvHaCH8+2nKuetnjvx2ju5c9Sx7qTkRqIRGpBUzr2fqqFXwX7L3AqeR89sfmkFWkJCTz7g9Wpm4R6kRQazs+mtiRF1ed5LkVJyit1PHayHb4uTrjHXAn3gF38siZtWSvm8FRBw+O6vI4UX6GZUZGVJ75Ec4o34VGKg2OGgvMzRww1ZhhpDJCZ9BRaaikTFdGbnkuJdqSGsc2U5nhZ+bHZL/JdLb2prNbd1xiwmDTM+Dehc1dfuLF1dGs6XAbJwfm9hjf8RkBqx5kpe43DDkSi/MGUTx0KGFZ23n/4PvMCZ/DuDbjuKfdPXjZeDV0xM1CuVbPWxvOENzankndWpGYU8q9Cw5SWK5j7n1BtHW25P0/IjkYl8MTvyk3X6437KehafVafjj5AwvOLMDNwo0lo5bQ3uE6wxJSjkHCPhjxCbvzHYDEW74R2JSpVRLzp3cD4JElMPdCKk9FrmCZWs0zXv48G/osz3d9jgc6PNjg1ebriwZ9zS64F7l1gqOLwKCvntO7i4cdD/Xx4pd9Fxjg68RAf2cMsoGDaQdZcW4Fu5J3AdC/ZX/K9eX1+CpqjyTL9XPnW5KkQOBnIBLoDBwFnpVlueQf680EZgK4uLgErVixol7ia05WR1ey5YKWP9rvol3MTxzqPpcy80vdZFrHr8ArfjnHA2dTYNue+AI97x8sZ0hrDVP9b26cUnFxMZaWlsiyTKmhlCJDEUX6Ior1xWxLziWxtIjRbvnYZu9DJ+spMXWk3KotkrETJoBteS5tc07hUZKKs85Aju+zZNj35YWwUjo6qnkiUIwBaggXz+v1bI6rZFW0FiczCSdzicgcAxoVmKmhWAstrVTM6GDM7MPlGGRABp0M432MGO/z725wlOhL2Fu8l91FuynUF+Jm5MYwm2F0Me+CWrp69xT7nKMERM5Boy9ls747OzxfZmyb2u36WBdkWebXyErCM3S0sVVzPFMPQDdXNccz9Ohk5XEXZw293NTVf9z1BpkZf5cCYKyCAa002JpIjPY2vqnzKvw3K6Mq+fOCFoAuzmqe7VrzO8ykPItKY1tc03ei0ZWQZ9UWo8SlpOmyyJEqyFSryVaryTV3I8+iBWgLMJYNmOrKkE3dsTNIOFfk41ZRQPv8OFprdZipLMlwH4ZFSRKOOYeoMHZAoyum0NqPn+xf4dfzKtQSfDXQHNVtfhGo0RZjVpaCdepuvNM2kyPZEuc7k3MO7uwp2sOxkmPo0NHOtB0DrAfQzrTdDVuMG6v6+rzqDDIqiav+3/jxZDkH0/SYqsHNQsWFQgMWRvBisCneNpe+c8t0Mu/sL8NYLfFub9Pb8v9ZcmUyv2b/Sqo2lZ4WPZloPxEz1dULNCLL+J/7Ctv80xhpi9nfeyE/n9VwLFPHt4P+++eoKX4Xn8/T89GhUn5xWUcHTSIWueG86ejAX5bm9LToyWSHyWiulpg1IcXFxdiFf4qrupikfl/UeM4lfSftzn3N4W7fUWpxqS6KziDzbGgp7Z0qaOd5kr1Fe8nUZWKpsqSXZS/6WvXFXnP7VVT/p4EDBx6VZTn4n8vrMwENBg4CfWRZPiRJ0tdAoSzLb15rm+DgYDk8PLxe4rtVsiwjSRKF5Vo0KqnGGKzMonJmbz7Li8P8aGV/+/UynrkknLjsEra7/qC0gD57qmahkspS+KaLMnn9/esBmP7LYZLyStn5YshV96nVa4kriCM6L5qEwgSOxByhwqyCxKJEiiqLrrqNMRLGBj1GKiPUJjZUyjoq9BXVXcUuJ8ky7hZuyDp34tOseHfEUAZ4dL+pweyfbD1HfHYJP9wXxMwl4ThamTB7QscbbidcKSwsjJCQkGs+r9Mb6PdpKBq1RFJuGZIELw3zI6OwHIMs42hpwgO9PbE1N+a9TZH8su8CM/t7E59dwoG4HNY90ZtTyQWM7eyO5ibGHCcUJvBr5K9sjN1Ima6M3u69uT/gfnq7977+XdWSbPimK9h6cDzwHe7aUMriGb0b1cTPFTo9JRV6jiXk8c3O85xKLqC7lz3t3a357WAilXoDozu6McDXiUndWrE/Npt75h3iuSFtGejnTOfLehHc6LwK/53eIPPHqVSOJuSx5EACfz7TjwD3mxhvXF4IEWuhvAAKUpS5XS2coSSzagUJpaQCoDZWxvN3ngpG5mSd2YFT9mHl+d5Pw8nfobKEkkf203NuFJ4OFrwztj1Bre3q6FXXjehju9BveJp2UgK60V+h6fYgOWU5rIpexcpzK8gqz8HT2pN7293L2DZja4z3bgrq4/MqyzJT5x0ku7iSR/p5kZJXRrCnPf19nTiWmMfEufuZ2LUFG06kolFJPNLPm4ldW+DtZAklOcpwHo1yQ2/d8WSe//0kc+7uzF1ByjRR5zOK8HayRN2ABXvKdGX8ePJHFkcsxtbElnd6v0NIq5Crr5wTq1QrzbsAEevAyh06T0E/6C16fbSDoNZ2/HBf0H+Oqal+F0+cu4+s4gpeCPFkeMKnmJYk8UP+aX60syHIKZAvbYKx6zLttpyiqjaEhYVhsetNnEwNeL66r+aT6Wfgxz4w7EPo/VT14oTCBJ7Y9BWJlbtApaWzU2cm+01muOfwq/fouk1JknTVBLQ+bzkkA8myLB+q+n018Fo9Hr/W5JVU8tzvJxjSzpn3/ziLzmDgf6MDmNHXi0qdgfsXHOZcehEeDha8MPQqJbsbWGxWMcOtLijzBvZ+6soqmcbm0G0GhH4I57eDZ1/6+zrx/h+RJOeV4mpjTFRuFMczj3M29yzRedHE5MdUTziuklTYqe3ws/VjlOMoWlm1wsnMCQczB+xN7Xl47kE+sNpBv5Id4H8HTPihxuENsoESbQlZpVlklGaQlR1FSug7xBobiDTJx8j+JB8e2cWHR8Ddwp1g12CCXIIIcgnCw8qjRuIRn13Cz7vj0Btkvg+N4e/IDIw1KmaN/O/dPYUrRaQWklZQztdTAvFxtsTF2hRHy6u3mj85sA0GWebJEB/SCssY//0+hn65G1lWxgk/0s8bL0cLjDU1E1FZljmWeYzFEYsJSwpDo9Iw2ns00wKmXb1E/kWJByHjjHJBH7kBKovhzvnsPa1GTzSdWjWu8vAmGjUmGjVDAlxwtTFl+9kMHg9pg4lGzZujA3hjwxnWHktmy5k0EnNL2XAyBTMjNY/2b4OZceMsWtCYqVUS4wJb0K+tE3+eTuPRpeE8NqANXo4WtHW2UoYjXI2pNQQ9oDyWZdBXwonf4I6vwN4LHP0gLlS54PcdoVRWrBJBD0L8HaE0RxlX2fNJKM9neZSBonIdH4zvUONGRGPh23UAG9lA+rrpDNz8HJzdgENlMY/dvYjh+/4ksiSKX81b8OGhD/k2/Avu9hnP1I4zcLFwaejQG40DcTkcjMtFrZJ4dY0yPk2SoLunPfE5JdhbGPP+uA4MaeeCi7XppZsYCQdg6UQwtoSu94OdJ2Nb9uC31na8vvY0e85n0dPbgVlrT/PKCD+eCPGp99emM+jYGLuR7098T2ZpJhPbTuSFoBeuPUVIZQksHAWl2SCpwGsATFsPKhW7z2WSWVTBuMDGNwavPs3s781jS4/x/NqzjGj/CN/f054nf78Hr/QDvCkfZ1JaOF+khdPxrl8bOtQ6o0aHQXWVxNG5HXj0hr//h3x8CUf7PcXi7CPsStqFStKgLexEZV5vZvQcz8A2zvUfeB2ptwRUluV0SZKSJEnyk2U5ChiM0h230THWqEjKK+XNDRFYmmjo7enA+39E0t7dmvOZxZxLV1r8DsbmwO01owNavYGEnFLuM8wD21Yw4Br3ALpOh12fwm93UuoeiF33FzF2DOXx7cvJqIymTFcGgKOZI352fgS17cmFVBseCO5FcAtf9u3Zd8VdvOS8Ul5fd4aBpYfpp12nLOxy7xWHVkkqrIytsDK2wtvWG9x7QXIEHP4ZOWAcg9PeJ748jXZe2VioE9mbspeNsRsB0Mh2jGozmOJcX1LSWtDKzhojtYSVqYbP/orCRKOiQmdg9dFk7unhgYlGuRBfciAeF2tThjeSQgm3q8MXcgHo5e2As/U1uklXlkD0VhwcfXlnuCcc+gqb8gIW3TmZ2bvzCLIvZ+HRJDYfjcHDrILPHx5NBzcrtGU5bI/4jcWZB4nIicDWxJZHOj3CVP+pOJrdoOVy/7fw95tUtxQ5tYNRn1Jm25adUQdp42SBdSO+IdGhhQ0dWly6eFKpJGZP6MgLQ33p90ko34XGEOBmzYO9vUTy2cDsLYyZd38wDy06wv/WnQGUC/vVj/W+cUukJMGYr2DYB2ByWTe9wHuuvY3rZVU5rd2oNHdhwd5QenrbN8rk86IxXTwZv/stCovnc0fmcSgvQv1le7wAF9mEUREHOGFizK821iw8t4xFUSsY3qI/97v1p33bO5QbrUINJRU6tp/NYF9MNjvPZeFoacKfz/aluFyHk5UJH205R1R6Ee3crHmgtycWBTGM8nYEMxulmNvuT+HoYuXawsEH9nwOyKiB37o9yQtWEwg9l8mGEyn0UkXy224DU7p5YF8LtSVuhs6gY1vCNn48+SNxBXF0cuzEp/0/JcjlGi2XBgOkn4TD86A4HR7cCi2DlSRUpdwY/f1IEg4WxgzyFzc3rmdogCv39PAgPruEvyPTCfwwm5eHz+H+zuG0PruaF8rPM734OLP2vMddfd9skuNC1bL+yiq4ACo1+ntX8/eOl1mctpuI459ha2zDzE4zmew3mYPntTy9/DgRKQUM9BMJ6L/1NPBbVQXcOODBej5+rbAw0fD9PV25+8cDPDGwDQ/18aLr+9tYczSZvTHZBLe2I9jTnvl74iiu0GFpcvv0bU/IKcVVzsC9JAKGvFvzIqaKLMvE6orYO+BR9maEc7Q0Bd3J/2HiCNllHoz3G09X564EOgfiauFKuVbPc18v5Y6CZURJ7vTyuHLgfoVOz5O/HSMzOY5HjY5SYuWNxYwNStGjmzH0PTCzR9r9KQssEhla8DxZKd5EnOvMayNeIqitlpmrVlKmPsum2I3IUiWysTFnMv0Y1HU4UzoM42h8EX18HHlh5Qne3RTJrugsFj7QjYjUQt7eGIGDhTHWpka0sjejpZ24OPk3Dl3IxcvRombyKcvKhbPBAHE74Y8XID9Bec7GAwqSQKWmp8lSNtp5Qsxx/mdrj7o8D0mWSZpvzS/WKpbbWJGulvA0deTNnm8yps2YKyva/pMsw9GF8PcbEDAOBr4BRmZg2wpZlnlo3iFOJOXzXhOdA9PR0oS3xwQQlVHE/0a1u6luzULd6+Jhx9E3hpJeWE5sVjGPLAnnq+3R5Jdq+WZqF1ysTVhzLIXJwa2u6AEAXPV7+2ZtOplKWkE5syc27mEIkiTx7IiOPLRoGq+UT6eTPpKFrmtIzi3ioYqX6K85Q1mlBnvrNrySuJwU2xjWGkL5M2UXXff+jztKzLljyFtEpRWTknAe2w5D6dN7QEO/rAb12NKj7DmfjY2ZET297ZnR1xtnK1OcrZTnq4euyDJsewuWfwvW7koF/YJE5d8u98HA18HKVUlKywvgwLeYHPme7x3+ptTVjgOZGgYb9nNY58cPs//EwlhFl0F3M6BfiLLvwhSli6uqdr6viiqLWHd+Hb+d/Y3UklS8bLz4KuQrBnkMunqic2EP5MQohWHSTijLuk6H1r1qrJZdXMH2sxk82Mfz6p9ToZq66qZoekE5A+eEUabV811oHJNfvZP2nSbxSWwkP4Tdw3txqzicspc3xvyKTRPrsaD55zygKNOobI3fyo8nfyS+MB5PK1feTDrLGBdfzDrMACMzxnSGT/86V9241VTUa2Yky/IJ4Ip+wI1ROzdrwt8YUj0nZb+2jqw6mgzAZ3d1RiXBj7tiORibw5CA2+dDFJtVzChVVS/oy+YcqtRXsj91P7uSd7EvZR9pJWkA+Nj6cJ/zHfSIP0K7xNM8pXmF1++fVmOfe9Z8z9dF72Ki1nEgxgIYpTyhq6weA/LTmi08lPE940z3AyB3ev7mk09QkoaBs8DOE6/1j7Hf93ccHJ1YeMGOj7bq0W9VE6LSMMnFgVejxmBtEYnG+hy5lnHsKZzDiX1fMMznDtRxMit6tOXb7CB+D09i0Oe7uJBdgolGRXZxJVPnHSTAzZrNz/Rtknfg6pLeIHMkPpepbQ0wf4iS8OnKlal17ForFxXlBcqd8XtWQuxOpdrxmG+gdW/Y/g6kn4K+L6ApSiPFypl5eefYXBxFucpAQBncny9zj/YM6orfoNUQKEyDimJIPqJ0R6woVu6+Jx1RWjgSDyjjdjz7wcR5oLnUzXHjyVQOxOXwwfgOTbp0/pTut/A5E+qNSiXhbmuGu60ZA/2c2XImHYBvd57H2cqUH3fFYjDITO/tWavH/f1IEj7OloT4OtXqfhvCIH8X3hjdjoX74omu6EiHNKWK9ayR/mQUdsPXzowHenty8MJ4whbNZ2RWDGkeMpHGp3jPtJxfDv+P+wqLmFBUgi71F+Iyn0BvbEPbUU838Curf2dSCthzPpvnhrTl6UFtUevL4be7YXMmuLRXxj7atAKblspQhgu7odMU5XvczAIGvw1th9Vscbd0Un7u+Er5Dg5fiHlFIYMNp8C9C93STtFdFaV0TNmxlIJTQViaGKFOPoje1gu1qSW07A4x22DEJ+DVT+lqfhN0Bh2H0g6xIXYDOxN3UqGvoKtzV17r/hoDWg24doGqXZ8qw48ATKxhzNdK13arK3tHrTuWgs4gM7lbqyueE67O1caUfa8N4nRKAdN/OcxvBxPxc7Xi3vkX+Gz8CoKSXueHkmiOrxzK7Jaj6K4yV+bKdGjT0KH/Zxp0GFRK2qU36Pkr/i9+PPUjFwou4GPrwxchXzDYYzCqo4vhj+dh49MwfDZYOuPnYk2USECFiy4mnwCD/V34KyKD4NZ29LEvRH9yBa5Gbdgbk31bJaAxmcWMUh9C79oZg3ULDiTv5q/4v9iZuJNibTHmGnN6uvXkkU6P0Ne976UiP0UZVHwdxMNlC0jJv4sWtkrLU/G5nQw99yZRZp0pNnaiS+Fu5JTjmBYnop99N7p+r5Js4s1TkQ8ha1QQMBES9iN1uvvfvYDAqRD1J85nN0K6FQ9XFvGghRlntS60ljKwyiujq+nfyFo9rnn5FBm8OVWZxZ/m5mw5v4E1KglvrY5xAQ/iYOVLdnEF03u1JsTPiRWHE0kvrOBkcgEL9l5gSneP26r1+nb39Y7zlJWV8mT6B1AUqySFAN5Vc3216gEtu0GHO8HIFHyHQ8hrStEUgCm/AXAq6xSLIxazPXEDKlQM9xmJVflg5u2oJJEcuvrspf2FVfB1Z6goVO66y/prB9bnWeXi6B/zb/24K44AN2vuEQma0MBGdnRjy5l0XK1N2XAitbowy4+7YnGxNmFYgCuSBJlFFbhcq2v7ZdILyskqqiCz1AAoN1s+3ByJg4UJ59ILeWqgT5O5wfZwP28e7ufNvN1xfPjnWUw0Kqb1al2jMGDvNo5YP/Y4sVnFvB3YAr1Bz2e7VrD1wmI+dkjjG6cWTMrN4N7TX2CnV8GAqWDhiO78DgwZZzH2HwGO9T9WsT4t2HuBAcZRPF78N+ql8ZB9HgpTlYQy9RjYeSnTjmjLwMoNQl6HAa8ov6uNQX2dv5WSBB3vUn4AMiLBwQepshhUagqLS1i54FN6Z4Zipjbwl24MvUqS8FLLWIcvQDaxRloxVdm27XBl6I6RuXIzM2KtMmc4kO3Vj3CNTFhSGHtT91JQUYC1sTXjfcYzwbmbMq2KTctLcUVtUWphtB0GMdsh7RSkhEOnydD3ebBwUqaFu4Y1x5Lp6mGLj/PNJcWCwt7CmP5tHQnxc+LjLedwsVFuDG+KLGTJQ2vpffwXZh3/kodT/uCBgiKeOvQTxveuhhZBys2PpEMQ9KByHdGIqNGjldRsubCluhu4j60Pnw/4nCGth1y6KRL8oFIoMfQDOL0aRnzEKGMjXs12pUKnrx461tjVWxXcf+N2roJbrSwfdn2CNjOa53Mn8IpfJh5HZoNBS6jlaD6QZrLjGpVjG8K7v/7B0JQZ/OXbl+0V6RRWFmJlZMUgj0GM8BpBD9ceGKmvPhYu48+PcDn8MScCXiZw3LMQs4OSTa+QWQqlM3YTF3mUMYeUsUi5Jq2wr0gCoEJlTrzeAfdn/sLKocVV931LKksgI0JJZqL+hLhd6M+sA1056nHfYFj3OJKuHMm6BZTlwl2/gK6c0tMr+cvcjNXp+zllYoSxDP0dezDNvQddDi1EcmiLtv+rTP71PMdyNPi7WrFiZk9szRtPtbG6dq0KfekF5fT6eAefeB5jUtocmLJcabW2cFLunt/gYldv0BOaFMqSyCUczzyOlZEVd/ndxT3+9+Bqodx5NhhkRn+7FwtjNavb74O9Xylj37Rlyh+jslzlmMUZyv+Ns5sgL165c/6PrlwZheX0mL2D10b689iAxn9n9b9qqpUXGwud3sCGE6n09nHgg81nySgo554eHsxae5oKnYG7g1pSqTew8WQqKx/tRTdPpVKkLMuUaw3V43pziiuY/ec51hxTeuOoJPjf6AB+CIvBSK0irUCZL27TU33p2LJxFd26EVmWiUgtRKOW8He9ierCVU5lnWLRmcVsT/gbCRheUsKkSg1dJRNU+YkA6FFDr8dR93vxtqjSWduf1/SCcp759AeWGc9GY2wK9t5g5wntxlxKGkEZRgG11jX2cplF5byzMYLU/HJ6eNuzYM8FdAaZoa3VnE0rZFnXc3hY6OHEb2hLssjQqIkzMiLG2IgoUzNOGmtI0ShJsK3BQH9jJ0LUtvT3GIJJ5AZIPgwqDYTMUgrQpRyDpMNKLx1kQFISWlsPmLqiuvfWtRSUaun83t+8NMyXpwa1rbX3oTl9F+eWVPLsiuMcS8jD28mSs2mFHH1jKDbmRpRWljDn4AesuvAHfnqJ97LzCCgvhapilwx6U2kZtW4cc6/uDN1JypEn+c3RnBR1JT62PjzW+TGGth569dZ4gwHO/wUHf4ALypyfL2tn8sCTb9DevXF9d1+rCq5IQP+LimKYNwhyY0FjqlQfLMtTumuY2WE4tZJB5Z+y7NV7cbe9wVi1OqQz6DiSfoTNsX/x1/mNlKu1WGjMGOgxmOGew+nt3vumSjrrK0qI/jSEdvpoZLUJkr6CNJUrH1u8wtcvzuBYYh7v/rCEn+yW4loazTlDK0INgfRWRbDK/WU+eOw6hTL+q7J8JTG1aQGJh6AoValUV1l8ZVff2FCiIlaxKuFPNltaUKxS0bZSy/0FhYwqLkFj34btvZbw1PokRnRw5avJgUgSTabF4L+41h/HpQcT+Gb9HvY6f4qxhR3MDLth0glK1+/1MetZeGYhycXJtLBswbSAaUzwmXDVqRO+23meOX9Hs2B6MIN97WtU/LwVK8OTeGX1KbY82492bjd/sdpUNaeLnsakuELH96Ex/BAWC4CJRkV3L/vqseuL9sez5Uwa30zpwt+RGayuGgYyo68XPbzs+X7rCU5mKb0Dlj/Sk7lhMSTklLLr5RDxffYP723ZS2jaGorZQblaxlNnhE+OA5LtTLonLmWKJkxZ0bMfjP4cnPwaLNba/rwuXbWKcWeextTODaNHtoOFQ63t+59kWaZMV0aprpRSbWn14zJt2aXHujJySovYfT6FY8kZoKrA0aaClk6VZJZkkFOei8yla1dnc2c6O7Snc0YMgfHhdHDpijonFpChJEuZtqjfCxC/F879oWxk5a602j64FbKjwNQWWnS96dexKzqL6b8cZtnDPejtU3vTdzXX7+KTSfmM+34fD/T25O0xAdXfT2FJYbyz703yKvKZau7FU23uxDJyk9ItG5QktDRHmSan3wvXL8jWAAyygW0J2/h8/+ekadNw1xvz/MAPGeY57ObmKS7JgbCP4Mg89hvas7f3L7wywr/uA69Ft8M0LE1PxFrli2vq72DQwu/3KWMixv+glOuOWM8LmtVsPzuE+3t51mtoWr2WQ+mH2JawjZ2JO8mvyMdYVhNSVsRgtTODHg7FVHNr3RfUJhaoH9nB1O8X8rDpbqIsOjAnM5j3h3cCoHNLW1p36s/s0xl8YxzNVkM3fjW5h09KKvkgsMMN9v4fmdkqPwAePS4tv9rd6jYD8WszkDfCF/JCRQFbtdkszT3Om8aJfOXsxtS8bCZt6cffDl156PRUusdm81BfrwYpF99YhJ+OYLvpqxiVVMLYL26YfJZqS1kdvZrFEYvJLMukk2MnXgh+gUGtBqFWXbt7yYN9vPg7MoOnlx/nwKzB2NzCfZ2o9CKScktp7WDO0oMJuFib4O8quk4Jty9LEw2vjvDn7qCWyMD2yAw+2nKOx387xrbIDACcrUyY+etRAB7o7ckAP6fqSomaTBPCK9zIKqqoqnobRFmlXiSfV/HWyL68YeiDz//WorY5SazdAeJd0rE0+pK0Lv1ZeDKY6ZZp3Jm6GZPFY5WWQUdf6DKtTloE64tcWcLgyFmUGtlh9dDmf5V86gw60orTSChKILM0k+yybLJKs8gpzyG7LJuiyiJKtCUUa4sp0ZZgkA03vW8LJ2PUmJJXak5xii19PXvS3sUDVwtXvG288bb1xtq46iaiLCvJyMVus3qdMl+upYsyBKPHY0rvKX0FuHcFg15JQm1urWdWcYWOA7E5SBJ0asSVpG8nnVvZ8kBvTxbtj8fJyoQnByrXWyGtQtg4cTPfHPuGZVEr+TtmMa90ns5wlRGSkYkyJZWdlzI2eP3jyvnv+cQVQ27q28XE88eTPxKTH4OLxoXXM8rxt+hEF68RN78jCwcYPQfMHei56xM+P3yQiiFtm0Q3XJGA/hfHflXmYPMdrlxwP31M6baiUoGlM6peTzB2z+e8Fr4L6iEBLa4s5lDaIXYm7SQ0KZSiyiIsjCwIaRXC0FaD6LTkQXKMvPF/YrnSYvsv+LpaM+XOu5ixwgc7cyM+vTuAO7sqX95qlcTXUwLpFZvJx2U5nHK6g50zQ9hwMqV68unbSvCDmAMTgQmyzIG0AyyJXMJ38j7m29kxrjiZT80+IbY8gH27e1He52V+CIultFLH/b08aWUvKuWC0n0rJGku5upKpEd3K3NaXUNRZRG/R/3Okogl5FXk0d21Ox/2+5Aerj1u6qLYwkTDu2PbM2HufnaczWBi15v7fxWfXcKUnw+QV6oFwNxYzTtj2osLcaFR8HZSqt669DTlh12xbIvMIMTPiWcHt8XbyZKwqEycLE2uaIlRSVKNu+XmxpoaYyOFmlQqiacHdSQ2y4sXh75CWsU51setZFvCX+ja6JhT6c+PWZP5u3wppgfngmyAk8ur5mAdDt0ebuiXcGsKkilZ/wJuchbbgn5hqPX157LUG/QkFCVwLuccZ3PPElcQR2JhIsnFydXzgF9kbWyNo5kjDmYOeFp7YmFkcdUfM40ZZhozzI3MLz3WXHqsVqkpqdCx+EA8K48ksedAJU892uvqPVckqeaYTbVGqdJ7+fOXF0m63rjVazAYZMZ/v4+YzGJaO5iLOhG16K07AsgvreSzv6KwtzBmgK8TP+2K5aG+XrzR8w3G+4znvQPv8fKxOfzmFMjzQc/Qdex3SlVwgx5WTVcq3ofOVsaLhswCzz71+hoMsoG/E/7mp5M/EZMfg5eNFx/3+xizBDM6RU8nyfJfTvfW5V70B35gQcXrHDvZgV5Bjb+eq/jk/Ftn1ihjCoZ/dKm1559Vuno/Q8nBRUzL+pyE1JG0dq/d+Xu0ei1nc89yOP0w+1L2cSLzBDpZh5WRFQM9BjKs9TB6uvfERG2CPjYMtaGY3R734G/z35LBcYEtcLMxo62zJXb/mL9LkiR6tXXhx+NjGePijo25Ub23/v4bkiTR2703vd17E5MXw69nf2VNzAZWm+sYUXKa+/JO8sPnBbQojsBE0rEy+wEevGs85sZqXl5+mEk929DPt+nMz3Sz5JJs4n98iPGqPeR3fQbbaySf+eX5LD27lGVnl1GkLaJfi37M7DSTQOfAWz5m55a2uNmY8sLKk2w4kcoLQ5ViUoPbXbvY16y1p5GBl4f7YTDI3Nuzdb3NPScItcXSRMPM/t58uS2aN0a3qy5+Mi6wFsbWCwA8P9S3+rEXwfRuGUx2WTZrotewMnoVmcbn6KlvzdAWQ5lqZEXXw9+CXgvn/wZtuZKMunUG90DITwTrFg3eGnNVeh0sm4JJVjSfaScxrffoK1bJK8/jWMYxwjPCOZN9hqi8qOo5wI1URnjaeNLWri2DPQbT2ro1ra1b42rhioOZAyZqkyv2929ZmGh4IsSHsZ3dueuHA0ydd5AQXydeGu7H8cR8HCyN8XWxwtGy9o75TyUVOvbGZJOcV0ZMZjHt3a2ZFCyq39YmlUris7s7k1+m5fV1p7Ew1lBcoSM0KosNT/bBzy6AlqWzOJ62nnjj3UzfOp0BLQcws9NMOjl1gjsXQMQ6SD2hdLVeNFoZz+t3Cy2O/1KZroxNsZtYenYpFwou4G3jzaf9P2VY62GoVWrCEsPQoEdW/cu0y9aDigf+wvKn3hif+BWaQAIqxoD+GwUpMLenMgbkwS3XHYeWc3QdDpseoAgLuOsXrDr8uw+CVq8loTCBmPwYInMjOZl5kjPZZ6g0VALgb+9PH/c+9GnRh0CnwJqFhEpzKV39BKrY7WwesY87e9Xt2JXVR5N5adVJnhvSlueG+N54g9tURkkGvx77jpXxf1JmqGRAaRn3l0h0LC0hS29JOcZEafwI0e1jlcVUHnrly4YOuc7VGJ9y7k/K1j6JuqKACN8n6DLlnSvuKGeVZrE4YjEro1dSpitjaOuhPNzxYQIcAv5THG9tOMOSAwk1lr06wp+xge7VFZovOnwhl0k/HeCtOwJ4qK/XfzpuU9Vcxx01RgaDTFbxzVXDFee1dukMOr47uJGfjq1AbRmFJBnwtW3HeK/hDD25EdfYsKo1JXAOgMwIpRUm5LWaO9KWKb2Q/mUPjP98XsvyYef7cGQ+z+hfILf1CJY+3IOs0iyOZhwlPCOcoxlHicmPAcBEbUJ7h/a0c2iHv70/7ezb4W3rjZHqX7bm/AcxmcV89tc5Qs9lYZBldAblGtZILfHjfUHXvRH5X9w7/yD7YnIAsDU34uCswTVmQqgt4jMLZZV6vg+NIbWgjF7eDry65hTTerYmKa+MnecyUask7u7mjFurcFae/5XCykIsDG15rtsj3B2gJHxUlsDCUco8rtYtlPG9A14FYwsozVVaSGuhB1RGSQa/R/3OyuiVFFQU0M6+HQ91eIihrYfWGE4UFhZGcOhkotwnEPToj//6ePvfH4y/lID961G3542tqxBjQGuRzsKRD/26Y+rkj+nJuZiqTTHVmGKmMcNUY1rzdw8fwgd/j3HoJ7Rbfz/yuVHI6RHIdy/AYNMSg2xAZ9BRXFlMkbaIosoiCioKyCjNIL0knYySDJKLk4kviEcnK11cNCoNAQ4BTPGfQqBzIF2cu+Bo9o9B8BeL8li5wpKxmKefZqF+OB3d6n7utwG+TtiaSPT0rrtCBvXBxcKFl/q9zyPdX+Krza/xt/o4u8xL8DP25ZnEcHqUavHVJ4EEd5RtgIgB0GYgmDauCmX/ytk/kH+/jwtya35z+4gP7plc48s8tTiVX878wrrz69DJOkZ5jeLhjg/TxrZ2Ks6+ONSP7l72lFXq+SsinTKtnk+2nuPrHdF8MSkQd1szXK1NUangtTWncLQ0YaqYbkVoAlQq6aaST6H2aVQanu01gTPnW2FsUsqe1L+J0x3l0/yv+BTo1GkAw1x7MLSoEPeMc5AJHJyrzH8cF6ZcMGrMlCmqWvdW5vhzD6y/F5B4CLLOwZH5kH6KtdZD2CMbM6ztJu5Y9z4JhcpNPXONOV2cuzDaezRBLkF0cOhwzer49c3H2ZKfpgWz5XQaX20/z4vDfLEw0fDxlnM8uewYO14MueIm5H+VUVjOvpgcHunnhYWJBk8HizpJPgWFmbGal4ZfaijZG5PN4gMJqCT4cEIH9p7PZsWhdDjUihEdP2NnxiYM9nv58OgrzIv8nHE+YxnvMx6Pe1fDsUXKlELRW5XK+Be1HQ5D3gHHtrdczLBcV05YUhjrY9dzIPUAsiwzyGMQ97W7jyCXoKsO7anQyxihR7pBdeUbiXAaRe/092DpRLh70aVp7Boh0QL6L5RqSxm9bjTlunLKdGXorzcH4X9gY2KDq7krbhau+Jg44KOT8SktwHPox5gYmUFWlDIZtO8I5Q/bxbEORRmwcATkxilFErKjCW0/mwePenLszaH10vWwKd7FK9WWsvb8WhZGLCKzNANHlSt3WnbFO8+EUYlfA1DhORiTid/VHHfShISFhRHiZ4/8y3DO04p7tW+y6fmhuNooF8TxBfEsOLOAP2L/AAnGtRnHjA4zaGVdt12VdHoDp1IKeHnVSWKzSgCwMzfC39Wak8n5LH6oe/XUFcKVmuLnVRDnta7ti8lm+i+H0WsyMbeNwK/NBc7nRwHga+dLbytveh9aTNdKAybeA5RpQEpzwbUjRK5XCqaojKD9BKU4zqA3wNgcPHorU0gZm9ect7LKLZ1XXSXE70Y++wdJJ3/lqKkJ4WamHLFvSVqlMn+mlbEVQc5BBLsGE+QShL+9P5p/21WwgSTnlTJwThi+LlboDTI/3BeEl6NFrex76cEE3lh/hr+f74+vS90WrhOf2SvFZRXz1LLjPD3Ih5Ed3dh6Jp3Hlh7F1dqU9MJyhgW4cE+PFjy8ejG+PmdJqTiBQTbga+fLwFYDCWkVgp+xA0bRW5TPg74Cdn2qzJJgZg+D31Tmgq0sBacre+3JskxqSSoHUw+yK3kXB9MOUqYrw8XchbFtxjKh7QRaWV3/GmfZHzuZfGQi5/0ewf+ez/71e/H9zmjydnzF/4yWIfV7UYn9NiemYalDWoOWcl159U+ZvuzS73rl3+jMXL7eGYG/k0xQ+SHaVkajbtUDlVd/1OmnsVCbYBW1FSvf0VjbeOAc9DDmefFKf/aSbDi2+NIBh74PvZ+GBcOUcagAxpYwc5dSMWvhaMi7AN1nQvRfYO/NLOPX2BKRzom3htXLe9KUv0S1ei2bYv9kydmFxObH4mDiTLtkDUEFFjys3qGsFPI6hLzasIHWgX1/r6dPxBtUaLX0zX2LFyb2Y2p3D6Lzopl/aj5/JfyFkcqIu3zv4oH2D1TP4VlfCsq0HE3IJbuoklfWnALglRF+ooLxDTTlz2tzJs5r3TubVkhuSSX3zj/E/b1ao1NlobE6Q3LFcY5lHEcv6zBRGRPkGkwX5y50dOxIB8cO2BhkpYJn+mmlkJGROWhLlZ2a2EBFgfLYqz/YeECX+5Rk1LYVYaGhhPTscqny+0UFyZB6HPzvIL+igMicSCJ2vUdk/nlOmZiQWVU5097IEneLQMLP2fHRyHFM6BB83erjjcWstadZfjgRlQQ2Zkb0a+vERxM7kltSSVh0Fp1b2tCppe0N93MqOR+tXiYqvYhVR5OISi/CycqEsJfqfvoi8Zm9Ocl5pThamnDoQi59fRxRqyRmLDrC4Qu59A8wRmd2jDLNKU5mK8moqdqU9o7tCXAIwMPKgxYqM1yyzmMe/TdmSUfQAGWSRKlHd3Kd25FsaUdSUTLRpiaczjpNTrnS/drNwo3+Nr4MdutF94ApN/252f3jc/RPX8iFXrPxGv7kv37doVGZPLjwCPu8F9Ei5xA8f/q273UnEtDbwPt/RLJg7wWcyGOD9wbc07aDpLo0sa6Fs1IyHJRWzfwkZQwJgP8d0G4snN0I5zZD+/FKctrtYWWey71fKaXGjS0g/RTc8zu0GQRAhU7PsC9342JtyspHe9XLa20OX6IG2cCe5D3MP72AE1nHUcsWuOR68bV1Jf7J28G6JXR/GHo99a/nq7ytGPTkf90X25ILfOT2JStTHJg/04XFkQsITQrFXGPOFP8pTAuYdmWX8AbwyJJwjifms+vlECxEpcLrag6f1+ZInNf68+b6M/x6UOnCaqJRMbidM3+eSeSO7qW0apHMwbSDxObHVs9f2cqqFW1s2+Bp7YmnqSMeJva4HluGo3swZomHwGewMpTm9EoozrqUkP6fvbuOr7J8Hzj+uU+sOxnbYKO7SwQBERRssbGwuwv1p35tv3ZgICBigF8VEYOSEEnprgEbrHs7y1P374/nMEYpyOCMcb1fr/PaOU+d69l94rnOXU36YivMJrBsFyXJZ1HQ+hxyN3xLmrazx15Mqhl2BYaSqe01sTUxB9K+UQ96JJ5F99juNA1O5rrxy9mWbWPF0+dgMZ+608jUVlrlYMG2PBLD/fnsz13M3JhNh/hQ0osqKSy3YzEp5j0ykCaRxgj2VQ4XpZUOYmo1aV+RWsh145bjcLlxa2jfOISuTcK4sFNjep+EbkXynv33UnLLeGrqBvYWVZBVUsUFneL4z6VNWZG9gnV561ift55tRduodlUf1fFMWtPEHECnkGZ0DGtFN6eblmkrUXuWGk3pz7jHqDndN/VfaZbRkqFxF/ANgcpCcFaD24nrg5787upK+wenkRD572vR7U43Iz5egm/BJr7jCVTPW41pWuoxSUDrAafLzbJdhdz8xQqu7dWE52MXw/yXjXbopRnQ7yHjxbrhe5j1lDG3aKthRlPam2cac1ray2HG47D2G+PX0Hv+Aqs/7PoDJl9t7H/lF9D2wprn/XjBTl6fuZUvbu7FgFYnvg8onH4fomtz1zJm9Wcsy1mIdlsZbIrnMaVJ2PUnxLSHC9+FxF7eDvP4LP0IZo2m5Nz36fm7jabNl5HtWEeITwjXtb2Oa9teS6hv/fklrsLupLzaRXTwiRsZsaE43d6vpwsp15PH5da89/t2mkQG8vXyNDZllGJ3uenWJIypd59JSq6N4qoy1udu5NPl80loVIDbksue0j01gwnuE2gNJMASYIwpYfHDBzPOqiIczirs1TYqcVNiUjg58PrNHzNNLQEkleTSTltpZwmhbXgrQi4bB5b9n4OfLdzFy79t4dXLOjbovvFTV6fzwbwUgv2M+XRHTVzBxZ0bM3p4W7JKKvlgbgoLtucy4caeNIkMoLjCwd1fr8ZsUrSNC0ahePfqLlhPYoIu79m68eG8Hbw5ezufj+pZMy8yGM1p8yvzSS9LJ7cil0pnpdGVzu3yTAHkT+jaySSWl9BI+WBN+R1qv8+C44wWiGu+NiqIzD7Q7mKotkHKXOO6PTjOGBm7It/Yx+KH3eligP1d/nzx2uP+wWdzZinD3/+T2W1+pVXqN3DL7Hp9fSkJaD1yzdhl2Kod/HJff3C7Dz+JdcFOoylNhxGHH6nL7el3Wrv6P2czVBYdMu/RoDcX0DjMj69v7VOHZ/H3TtcP0U1527nz57coNi3HbIKh4R24eecq2hRnGU2oks8yPqwsp1hSVFGI+91OTA9rygdhjch1bCfUJ5ybO97EVa2vItBaN31thHecru/Xhk7K1Xu01rw+cxvj/tzFfWe35J3ft9es87GYsDvdvHxpB67umUB2RTZppWnkVuSSX5lPQWUBlc7Kmi481a5qLCYLPiYfrGYrhbmFtE9uT2RFCZEZ64jqcw9NozsQ7R9tNBE9wnWFy62xVTk45+2FtI0LZtLNvU6ruZBf+mUz4xbtJirIh8JyO24N/lYzGo2/1VwzT/S4G3pwTrsTM5ruP5H3bN2wO930/+88EsMDeOzc1rRpFEJowL9oieZ2GVMsVZcZc/36BBrX3W432LJg2l3GIEd+odCkD7QcAr88bAwA2u16Y7qjJR/wneMM3tXXsvjJs4/73LTWdH/pd4a1DOLl6Dlw5oPgd5h5cesJGQW3HumRFM5HC3ZSWuUgxO8Ib4jI5ofOK4rxwlNKHX745dhDp7bYW1jB7vxybjij6fGGLY5C++hWvND3RW7+6neCY5YyT/3FjHALXWM6M2LHNIau/Qr/LT9D3/uNASYy1xi11f+2Db/bZXSkPxF9ANZOhh2zqWjSi9+yl/NFdBCpPqWoSisJaiRTr3gAf0vdjjYohBANgVKKM5pH8skfO3nn9+2c3ymO8zvGUVLp4Ow2MYyeuoGnf9zIe7/vYNSZySzZaWb0sLO5pMU/X0guWLCAgd0GHnmDwySfWmvu+Xo1MzdlA3Br/86nVfIJ8Nh5rdmdX86avcW0axxCTmk1P9zZl9smraS40k7nxDD8PM2nxanNx2Li7oEteG76Jq4au4wgXwuTb+tDWbWT1XuKuHNAc8ymo3j9m8zQethhlpsgNB5unH7ouhZDjG5X+95fve9g3OszaBxWN6OXK6Xo0TScP/fY4Opn6+SY3iAJqBec0zaWMfNTePKH9Yy5thtKKaqdLlanFdOnWcQhXwr75n17Z852VqYV8dv9/fGx/H0V/ofzdrBsVyG+nu3OOklNbwUMbB3NmKsG8cG8RNJ2ns2NQ3P4M+cXnokO5/XYWM7P/ZPLv5xBa7vxayuznobwJGPk3N53GsOCm6zwx2uQvRE6XWk06bD6GSMf5++AjpeD2RcWvAK7/zT6Ave42fjVzV5m/P03qkqNPgw757Fr6dv8LyKa6ba/sJlNtPUNZqDlSn7e0pr/XtdTkk8hhPgbPZPCaRoZwKDWMfzfBe0OuOD9aGQ3xi/azexN2bw+cysAlfaNJEUFcuMZSSzbVUB4oA+XdGlcJ300JyxOZeambNo0CiY8wIezWnq/n/7J5msxM+7GHlQ73VhMinK7i1B/Kz/f1w+Hy02AjxmXW592iXlDdWPfJAa1jmFnfhnP/LiRyz9ZUtO3N6e0iv9c1P7ElPVBU63kldnJroS2SXV3zdQrOYLZm3PIKa06ZaflkgTUCzonhvH4eW14bcZW3p+bwtq9RQT5Wfl5XSa39kvmws6N6ZwYRqXdxZ7CCn7fksMbs7bV7P/njjwGt43lxzXpfLN8Dx+N7H5AP7eicjtvzt7f3Ccm2JdmdTQcufhnSimGd4yjR9NwLvpwMT/9EcKP93zHnoqN/LDjB6amzmZKSDAd/GM5r9EZDMlLp3FVGaSvhG0XGQcJiILqUqOf768PH/gEJiusHL//cfOzYfknxnxzviHGfl2uheFvwNwXYeMPxrD/l31mjJK8j8tp9FEozYDiPZC3neLlHzHH4uDXwEBWJTTGYrIwNKwdV4W2o2uv+7h4zBJiQyycc4Im+xZCiIYiwMdyxJFT/axm7hnUgpv6JjF+0W72Flbw3ap0VqYV8f2q9Jrt5m/LZWTvJpzRLPJfXSzn2qqYvHwvH87fwZB2sYy9/vDzFJ4ulFI1c3iG+huJvY/FVPOjvsV8+v5vGqImkQE0iQzgm9t68/niVCwmhdOtmbgkFZNSXNYt/qhGRv63xi/azduzt1Hl0AxtX3ezAvTxDIj15458Lu9+6FRNp4KTnoAqpczASiBDa33ByX7++uLmM5OZsGj3Af1CooJ8GLdoN+MW7Wb6vWcya1M2Hy/YSVSQL23jQrj/7BY8OXUDP6/LZHDbWD6cl8LOvHL6/3cenRLC+Pb2Piil+OavPQD8cl8/skuqiA72Pa2/cLwlJsSPcTf24IpPlnL7l6v59vY+9GzUk9G9RvPzzp+ZvnM6b+6exptA+8j2nNPuQc50aFoXZGDa9itc9RUk9ob87eCsAkelMeBUcJwxkbnJDAGRRudzWw4sG2MMwx/UyEhGN00DRzm0Hm50jv+gG8R1Mqb1Kcs15qBDU2QysSjAj1mBgSyODcGpICkwngdajeDSlpcR6W980BWV29mQ5+LuQUkNZtREIYQ4kf7puzfQ18L9g1tSXGEnyM9Cl8QwvlyaxsNDWrFmbzFvzNrGr+uzuKlvEiN7N6GlZx7Kmu44/+C933fw9fI9dE4M483LT79mt0IANI0M5PmL2gNGq0JblZOJS1KZtDSVj0Z247wOcbjc+uia5R6lNXuKePGXzQxoFc2w2DKGd4yrs2O3bxxCbIgvc7fkSAJ6DB4AtgD1t8fsSeBjMXHDGU15c/Z2bjyjKZuzSvnw2m7k2aq5fvxy3pi1jb2FFbg15NqquX9wS4Z1jGPhjjymrckkvaiCPYUV9EwKJ9Tfyu9bclm9p4gO8aFMXJJK/5ZRdIgPpUN8/RmV9HTUIT6Ud6/uwp1freKR79bx4sUdiAgM5bp213Fdu+vYW7qXOXvmMCd1Du+t/4T3gDDfMHp3HUqvqr20LwqhZWRLfMwHNumg7UG/3QTHwpAX9j9uNhC2/QoJPY3BjzLXwtIPoSgVW3hT1se2YI3JwVJHARsqc9BoYv1juK7ZcIYnD6dNRJtDLlTmbs1FA+e1r7sPUSGEEBAW4MNzFxoXyBd3iQegb4soLu0az0cLUpi4JJWJS1J5clgbdu2y88ifv/PBtV3p23x/U9qf1mYwfW0mH1zblQAfCy63ZtambM7vFMeYa7t55byEqG9MJsWbV3Ti4aGtuPeb1dw/eS09ktJIK6jguzvPoHHY8TeV1Vrz6oytRAX58NHIbqxYuqgOIt9PKcXgtrH8tCaDaqcLX8upN4/vSU1AlVIJwPnAy8DD/7B5g3f7Wc3pkRRB7+T9/T5jQ/y4Z1ALXvp1CwBNIgLILq3ivA5G1f3NZyYzZcVerv1sOQ6X5r6zW9KtaTg9XprDtDWZ7MgpI89WzTtXdvHWaYmDnNu+EU+e14ZXZ2xl9qZsPr+pF/08/W8SQxK5ucPN3NzhZnIrclmetZxlWctYlrWMWamzALCYLLQMa0mr8FY0CWlCfFA8cYFxhPmFYSWIknIL7eLCMCkTWmtjWPHE7pTEtCCnIofclJ/YY9vDzoggdpr8SSvdjLZrTMpEu4h23NXqMs5KOIu2kW0xqSPXbM7elE2En6JD/Gn925EQQpw0jcP8efHiDlzZI5Ex81N4bYbRX9Tfaub2Sat45vy2vD93B1aLiT2FFWgNn/6xi0u7xrNkZwH5ZXaGd5AfDYWoTSlFfJg/n9/Ukys+WcqyXQX4WswMfGMBwzs2onvTcLJLq3js3Db/6vjzt+Xy1+5CXry4/Qmbh/yctjF8s3wPK1OLOLPFqden+6ROw6KU+h54FQgGHj1cE1yl1O3A7QCxsbHdp0yZctLiqy/cWvP5Rjurc528dKY/TjdEB+xPDD5bX83iTCcWE4wZHICvWfHR2io2FbgIsir8LIrnz/DzalObsrIygoKCvPb89Y3Wmu1FbsaurybcT/F0bz9sdvgr28lZCRZ8Dup3orUmy57P6uI9uHzSSbenk+nIpNRVesTnUKiaSc4PZsJElCWKOJ844q3xNPNtRlPfpviZjq7zutOtuXtuBb2jNbd0kXJtaOT92jBJuTYsTrdmfZ6LisoqWkQH8NSiStwaIv0ULcNNhPgosiuMbfbxt8A7AwPws0jT21OBvGdPvnKHprBK43Rrft3lYGWOC5MCt4aXzvQnIXj/9bfdpfl+u50wX8XwZj6HPZ7WmmeXVGF3aV7u54/FpE5IudpdmrwKTeMgVa+b1g8aNMi707AopS4AcrXWq5RSA4+0ndZ6LDAWjHlAT9f5kM4eBA6X+7ATIPft52bh9jwig3zo2iQcgNBmRVz60RLKHZoPrunCoM6NT3bIB5C5rA41CAhonMb/TdvIy2tM2Koc5JTaSXWEcE7bGKKD/RjWoREmk8JW5eDGCX+xek8AV/UYwvCEYCodLj5fsp2CqmzObGMmJNDB7K278fd1UO1yMrxjDMlRQZi0D5GBwYT4hBATEEOjgEbEBsYe2oz3GKzZU4R99hI6xvpJuTZA8n5tmKRcG55z2F+uqyvX8b+V6bw4omtN/7Kskkqmrs4gNsSPhHB/WsYEERl0is07fRqT96x3XeNw0e/1+RRX2PGzmvhsq+LKHgmc2SKKbdmlTFqaxqbMCiwmxQOX9Sf+oOa6tioHmzNL2TtrGa9d1pFzejUBpFwP52Q2wT0TuEgpNRzwA0KUUl9pra87iTGcUg6XfILRf/TgSZK7NgnnnLax7MovY1iHuhtpS9Stq3okUlJhZ116CaWVDi7pGs/4P3ezKCUfgGEdGnFO21g2Zpawdm8x57SN5duVe2v2bxzqx4iO3fl+dTpaQ0xwEj/f1Y+7vlrFL3+UGE22S6qYfHuf4x7ZrbzayaKUfNrFhbAitRCAVuEy+JAQQtQHTw5rS9cm4ZxXa3TNuFB/7hnUwotRCXHq8rOaeevKzhSV21EKxv25mzdmbauZiSLEz8Irl3bk2Z82cvdXqxg9vG3NiLTzt+Vy/+Q1VNpdBPiYucDLFUH13UlLQLXWo4HRAJ4a0Ecl+axbH17bFadbywil9ZiPxcS9Z7c8YNmDg1tRYXfyzfI9vP37dmZsNCYKH9Etgbeu7ExhuR2TMuYw87WYMJkUr4/oRLXTjdmk8LGYmHhzL64bt5xt2TbCA3y488tVzH9sIF8uTWPa2gwu6RLPrf2bHXWcLrfmso+WsC3HRuvYYOLC/GgaGUCYX/1t5iGEEKeTiEAfrvHUsAgh6saAVtE19y/q3JiXft1Cnq2auwY2p1GIH+GBPlTYnYyZn8J9k9fw5+ODSC+q5I4vV5EcGUiurYqLu8QTdIL6fjYU8t9pQPbNbSVOLf4+Zvx9zNw3uCU390vmi6WpTFiUyn1nG79iRwQe2nTWZFL4++wv7xA/K9/deQYlFQ6255Rx3fjlvDNnBxMW7cbXauLl37YwsHUMLWKOrg/CzI3ZbMuxcUX3BL5blc62HBvX9EoECuvknIUQQggh6jOlFP93QbtDlt/avxkd4kO5euwyrvlsGelFlQT4mPny1l6EB/hgqsd9MusLrySgWusFwAJvPLcQ9Vmgr4W7B7bgrgHNj7lTua/FTEyImehgX7o1CeOTP3biZzUx+bY+XPHJUv47cyufXNcd0xHmudJaM2lpGnO35rI+vZikyABeG9GJpKhAHC43o85MZs3yxXVxmkIIIYQQp6w+zSK5skcC6/aW0DUxjFv7NyMm+OgGdhRSAypEvXQ8I5oppRh3Y09+3ZBFcmQgHeJDuW9wC/47cxtXfrqU2FA//Cxm/Kwm/KzGX61hb1ElP6/LpFVsEGc2j+LW/smYTUr6EwkhhBBCHOS/l3f2dginLElAhWiAIgJ9uL5P05rHdw1ojtbw6/ostmSVUu1wU+VwGTenG4XRhPuGM5ry/IXtj1hLKoQQQgghxPGQBFSI04BSRk2m1GYKIYQQQghvkuFShRBCCCGEEEKcFJKACiGEEEIIIYQ4KSQBFUIIIYQQQghxUkgCKoQQQgghhBDipFBaa2/HcERKqTwgzdtxiH8lCsj3dhCizkm5NkxSrg2TlGvDJOXacEnZNkync7k21VpHH7ywXieg4tSllFqpte7h7ThE3ZJybZikXBsmKdeGScq14ZKybZikXA8lTXCFEEIIIYQQQpwUkoAKIYQQQgghhDgpJAEVJ8pYbwcgTggp14ZJyrVhknJtmKRcGy4p24ZJyvUg0gdUCCGEEEIIIcRJITWgQgghhBBCCCFOCklAhRBCCCGEEEKcFJKAiqOilJqglMpVSm2stayzUmqpUmqDUupnpVRIrXWdPOs2edb7eZZ39zxOUUq9r5RS3jgfYTiWclVKjVRKra11cyulunjWSbnWM8dYtlal1Bee5VuUUqNr7XOeUmqbp2yf9Ma5iP2OsVx9lFKfe5avU0oNrLWPvGfrEaVUolJqvlJqs+d78wHP8gil1Byl1A7P33DPcuUptxSl1HqlVLdax7rRs/0OpdSN3jon8a/KtY3nvVytlHr0oGPJZ3E98S/KdaTnfbpBKbVEKdW51rFOz3LVWstNbv94A84CugEbay1bAQzw3L8ZeNFz3wKsBzp7HkcCZs/9v4A+gAJmAMO8fW6n8+1YyvWg/ToCO2s9lnKtZ7djfM9eC0zx3A8AUoEkwAzsBJoBPsA6oJ23z+10vh1jud4DfO65HwOsAkyex/KerUc3IA7o5rkfDGwH2gH/BZ70LH8SeN1zf7in3JSnHJd7lkcAuzx/wz33w719fqfr7V+UawzQE3gZeLTWceSzuB7d/kW59t33PgSG1Xq/nrblKjWg4qhorRcChQctbgUs9NyfA4zw3B8KrNdar/PsW6C1diml4oAQrfUybbzzJgGXnPDgxREdY7nWdg0wBUDKtX46xrLVQKBSygL4A3agFOgFpGitd2mt7RhlfvGJjl0c2TGWaztgnme/XKAY6CHv2fpHa52ltV7tuW8DtgDxGO+3LzybfcH+croYmKQNy4AwT7meC8zRWhdqrYswXg/nnbwzEbUda7lqrXO11isAx0GHks/ieuRflOsSz/sRYBmQ4Ll/2parJKDieGxi/xvlCiDRc78VoJVSs5RSq5VSj3uWxwPptfZP9ywT9cuRyrW2q4DJnvtSrqeOI5Xt90A5kAXsAd7UWhdilOPeWvtL2dZPRyrXdcBFSimLUioZ6O5ZJ+/ZekwplQR0BZYDsVrrLM+qbCDWc/9I7015z9ZTR1muRyLlWk/9i3K9BaP1ApzG5SoJqDgeNwN3K6VWYTRBsHuWW4B+wEjP30uVUoO9E6L4F45UrgAopXoDFVrrjYfbWdRrRyrbXoALaAwkA48opZp5J0TxLxypXCdgXNCsBN4FlmCUs6inlFJBwA/Ag1rr0trrPLXVMnfeKUjKtWE61nJVSg3CSECfOGlB1lMWbwcgTl1a660YzW1RSrUCzvesSgcWaq3zPet+w+iz9BX7mx3guZ9x0gIWR+VvynWfq9lf+wlGGUq5ngL+pmyvBWZqrR1ArlJqMdAD45fZ2jXgUrb10JHKVWvtBB7at51SaglGX6Ui5D1b7yilrBgXs19rrad6FucopeK01lmeJra5nuUZHP69mQEMPGj5ghMZt/h7x1iuR3Kk8hZecqzlqpTqBIzD6G9f4Fl82par1ICKf00pFeP5awKeAT7xrJoFdFRKBXj6lA0ANnuaJZQqpfp4Rly8AfjJC6GLv/E35bpv2ZV4+n+C0RcCKddTwt+U7R7gbM+6QIxBTbZiDG7TUimVrJTywfjxYfrJjlv8vSOVq+czONBzfwjg1FrLZ3E95CmH8cAWrfXbtVZNB/aNZHsj+8tpOnCDZzTcPkCJp1xnAUOVUuGeETiHepYJL/gX5Xok8llcjxxruSqlmgBTgeu11ttrbX/alqsyaoiF+HtKqckYv6pGATnAc0AQxiiLYLyxRnuaHKCUug4YjdH84Det9eOe5T2AiRgDncwA7tPyIvSaf1GuA4HXtNZ9DjqOlGs9cyxl62lG9DnGoDUKY+TUNzzHGY7RfNMMTNBav3wST0Mc5BjLNQkj+XBj/Kp+i9Y6zXMcec/WI0qpfsCfwAaM8gJ4CqNf2f+AJkAacKXWutBzAfwhxgBDFcAorfVKz7Fu9uwL8LLW+vOTdiLiAP+iXBthNJkP8WxfhjEqaql8Ftcf/6Jcx2EMDpfm2dapte7hOdZpWa6SgAohhBBCCCGEOCmkCa4QQgghhBBCiJNCElAhhBBCCCGEECeFJKBCCCGEEEIIIU4KSUCFEEIIIYQQQpwUkoAKIYQQQgghhDgpJAEVQgghhBBCCHFSSAIqhBBCCCGEEOKkkARUCCGEEEIIIcRJIQmoEEIIIYQQQoiTQhJQIYQQQgghhBAnhSSgQgghhBBCCCFOCklAhRBCCCGEEEKcFJKACiGEOO0ppVKVUud4Ow4hhBCioZMEVAghxClFKXWtUmqlUqpMKZWllJqhlOrn7bhON0qpgUqpdG/HIYQQ4tQiCagQQohThlLqYeBd4BUgFmgCfARc7MWwhBBCCHGUJAEVQghxSlBKhQIvAPdoradqrcu11g6t9c9a68eUUo2UUhVKqcha+3RTSuUppayex7cppbYopWxKqc1KqW6HeR6TUupJpdROpVSBUup/SqmIv4nrYqXUWqVUqWef8zzLGyulpiulCpVSKUqp22rt87xS6jul1FeeWDYopVoppUYrpXKVUnuVUkNrbb9AKfWqUuovz/P8VDsmpdRFSqlNSqliz7Zta61LVUo9qpRar5QqUUp9q5Tyq7X+Ak/8xUqpJUqpTv+0r1IqEJgBNPbURJcppRofS3kKIYQ4PUkCKoQQ4lRxBuAH/Hi4lVrrbGABcGWtxdcDU7TWDqXUFcDzwA1ACHARUHCYQ90HXAIMABoDRcCYwz2nUqoXMAl4DAgDzgJSPaunAOmeY1wOvKKUOrvW7hcCXwLhwBpgFsb3cjxGov3pQU93A3AzEAc4gfc9MbQCJgMPAtHAb8DPSimfWvteCZwHJAOdgJs8+3YFJgB3AJGe55yulPL9u3211uXAMCBTax3kuWUe7n8khBBC1CYJqBBCiFNFJJCvtXb+zTZfANcBKKXMwDUYSR7ArcB/tdYrtCFFa512mGPcCTyttU7XWldjJK2XK6Ush9n2FmCC1nqO1tqttc7QWm9VSiUCZwJPaK2rtNZrgXEYSeQ+f2qtZ3nO5zuM5PE1rbUDI3lNUkqF1dr+S631Rk/y93/AlZ5zvAr41RODA3gT8Af61tr3fa11pta6EPgZ6OJZfjvwqdZ6udbapbX+AqgG+hzFvkIIIcQxkwRUCCHEqaIAiDpCIrjPT0A7pVQyMAQo0Vr/5VmXCOw8iudpCvzoaZJaDGwBXBh9Tg92pGM2Bgq11rZay9Iwajf3yal1vxIjuXbVegwQVGubvQcdywpEeZ6rJpHWWrs929Z+ruxa9ytqHbcp8Mi+c/Wcb6LnmP+0rxBCCHHMJAEVQghxqliKUTt3yZE20FpXAf/DqAW9nv21n2AkZc2P4nn2AsO01mG1bn5a64wjbHu4Y2YCEUqp4FrLmgCHO8bRSjzoWA4g3/NcTfetUEopz7ZH81x7gZcPOtcArfXko9hXH33oQgghhEESUCGEEKcErXUJ8CwwRil1iVIqQCllVUoNU0r9t9amkzD6OF7EgQnoOOBRpVR3ZWihlGrKoT4BXt63TikVrZQ60ii744FRSqnBnsGL4pVSbbTWe4ElwKueQXs6YTTX/eo4/gXXKaXaKaUCMPqIfu+pMf0fcL4nBivwCEaivuQojvkZcKdSqrfnfxKolDr/oMT5SHKASGUMDiWEEEIcFUlAhRBCnDK01m8BDwPPAHkYNXj3AtNqbbMYcAOra/fx1Fp/B7wMfAPYPPscbnTb94DpwGyllA1YBvQ+Qjx/AaOAd4AS4A/210ZeAyRh1FD+CDyntf79mE96vy+BiRhNYv2A+z0xbMOo8f0Ao0b0QuBCrbX9nw6otV4J3AZ8iDHYUgqeAYqOYt+tGIMf7fI035VRcIUQQvwjpbW0oBFCCNGwKKXmAd9orcd5O5a6oJRaAHzVUM5HCCHE6evvBnIQQgghTjlKqZ5AN+BIzWaFEEII4SXSBFcIIUSDoZT6AvgdePCgEWiFEEIIUQ9IE1whhBBCCCGEECeF1IAKIYQQQgghhDgp6nUf0KioKJ2UlOTtMMS/UF5eTmBgoLfDEHVMyrVhknJtmKRcGyYp14ZLyrZhOp3LddWqVfla6+iDl9frBDQpKYmVK1d6OwzxLyxYsICBAwd6OwxRx6RcGyYp14ZJyrVhknJtuKRsG6bTuVyVUmmHWy5NcIUQQgghhBBCnBSSgAohhBBCCCGEOCkkARVCCCGEEEIIcVLU6z6gh+NwOEhPT6eqqsrboYi/ERoaypYtW/Dz8yMhIQGr1ertkIQQQgghhPCK55Y8x7DkYfSJ6+PtULzulEtA09PTCQ4OJikpCaWUt8MRR2Cz2QgKCqKgoID09HSSk5O9HZIQQgghhBAnndaaqTumMnXHVDbcuMHb4XjdKdcEt6qqisjISEk+TwFKKSIjI6W2WgghhBBCnLZc2uXtEOqVUy4BBST5PIVIWQkhhBBCiNOZ1trbIdQrp2QCKoQQQgghhBCnAjdub4dQr0gCeoxSU1Pp0KHDAcuef/553nzzTQDefPNN2rRpQ5cuXejZsyeTJk3yRphCCCGEEEKIesDllia4tZ1ygxDVZ5988glz5szhr7/+IiQkhNLSUn788UdvhyWEEEIIIYTwEo00wa1NEtA69Morr7BgwQJCQkIACAkJ4cYbb/RyVEIIIYQQQghvkUGIDnRKJ6D/+XkTmzNL6/SY7RqH8NyF7Y95v4qKCmw2G82aNavTeIQQQgghhBCnLhmE6EDSB/QYHWlUV3lhCSGEEEIIIQ7m1vsHIbK77F6MpH44pWtA/01N5fGKjIykqKjogGWFhYV0796doKAgdu3aJbWgQgghhBBCCODAJrg2u41I/0gvRuN9UgN6jIKCgoiLi2PevHmAkXzOnDmTfv36MXr0aO655x5KS41mwWVlZTIKrhBCCCGEEKex2i0lbXabFyOpH07pGlBvmTRpEvfccw8PP/wwAM899xzNmzfnrrvuoqysjJ49e2K1WrFarTzyyCNejlYIIYQQQgjhLbVrQMscZV6MpH6QBPRfaNeuHfPnzz9kuVKKxx9/nMcff9wLUQkhhBBCCCHqm9o1oKX2uh1A9VQkTXCFEEIIIYQQ4gQ5uA/o6U4SUCGEEEIIIYQ4QWrXgJbZpQmuJKBCCCGEEEIIcYK42T8Ni9SA1kECqpRqrZRaW+tWqpR68KBtBiqlSmpt8+zxPq8QQgghhBBC1He1m+BWOCu8GEn9cNyDEGmttwFdAJRSZiAD+PEwm/6ptb7geJ9PCCGEEEIIIU4VtZvgVjgkAa3rJriDgZ1a67Q6Pq4QQgghhBBCnHJq14BWOiu9GEn9oGpn5Md9MKUmAKu11h8etHwg8AOQDmQCj2qtNx3hGLcDtwPExsZ2nzJlygHrQ0NDadGiRZ3FfKzS0tK48sorWb58ec2yV155haCgIO6//37ef/99vvjiC/z8/LBYLNxxxx1ce+21hz3WNddcQ05ODvPmzTvgWF988QVRUVHY7XYef/xxrrjiCgDuvPNOzjvvPC655BKGDx9OamoqmzZtQilVc7wFCxaQlZVVc7wxY8bw/PPPk5KSQmhoaM3ydevWMXbsWMaMGcO3337Lu+++i9aaoKAg3nnnHTp27HhIvGvWrOGuu+6isrKSoUOH8t///helFE8//TRDhw5lwIABNdu6XC7MZjMAKSkplJSU/Jt/t6hnysrKCAoK8nYYoo5JuTZMUq4Nk5RrwyVl2zCVlZVR7FPM61mvA9AzsCc3RN3g5ahOjkGDBq3SWvc4eHmdzQOqlPIBLgJGH2b1aqCp1rpMKTUcmAa0PNxxtNZjgbEAPXr00AMHDjxg/ZYtWwgODq6rsI9ZUFAQJpPpgBh8fX3x9fXl66+/ZuHChaxcuZKQkBBKS0v58ccfDxtvcXEx69atIygoiLy8PJo1a1ZzrIcffphHH32UHTt20L17d66//nqsVitWqxV/f3+Cg4Mxm82Eh4ezfv16+vXrR3FxMXl5eQAHPN+PP/5Iz549mTNnDqNGjapZ/t577/HMM88QHBxMu3bt+PPPPwkPD2fGjBk89NBDByTY+zz66KOMHz+e3r17M3z4cBYvXsywYcN45JFHuO2227jggv0trG02W00cfn5+dO3a9Tj/86I+WLBgAQe/J8WpT8q1YZJybZikXBsuKduGacGCBTTr2Ax+MR6HRoae9uVcl01wh2HUfuYcvEJrXaq1LvPc/w2wKqWi6vC564VXXnmFjz/+mJCQEABCQkK48cYbD7vt1KlTufDCC7n66qs5uJZ3n5YtWxIQEEBRUdFh19fed+rUqVx22WUHrN+5cydlZWW89NJLTJ48uWa5zWZj/fr1dO7cGYC+ffsSHh4OQJ8+fUhPTz/kubKysigtLaVPnz4opbjhhhuYNm0aAE2bNqWgoIDs7Owj/WuEEEIIIYQ4LdVucSpNcOuwBhS4Bph8uBVKqUZAjtZaK6V6YSS+Bcf9jDOehOwNx32YAzTqCMNeO+bdKioqsNlsNTWZ/2Ty5Mk8++yzxMbGMmLECJ566qlDtlm9ejUtW7YkJibmsMcYPHgwt912Gy6XiylTpjB27FhefPHFmvVTpkzh6quvpn///mzbto2cnBxiY2NZuXIlHTp0OOwxx48fz7Bhww5ZnpGRQUJCQs3jhIQEMjIyah5369aNxYsXM2LEiKM6fyGEEEIIIU4Hbr1/GhZJQOuoBlQpFQgMAabWWnanUupOz8PLgY1KqXXA+8DVui47n55E+/pbHuxYTicnJ4cdO3bQr18/WrVqhdVqZePGjTXr33nnHdq3b0/v3r15+umnj3gcs9lMv379mDJlCpWVlSQlJR2wfvLkyVx99dWYTCZGjBjBd999Bxi1mdHR0Yccb/78+YwfP57XX3/9qM9ln5iYGDIzM495PyGEEEIIIRqyfYMQWUwWSUCpoxpQrXU5EHnQsk9q3f8Q+PDg/Y7bv6ipPF6RkZGHNIktLCyke/fuBAUFsWvXrkNqQZcvX84dd9wBwAsvvEBaWhpFRUUkJycDUFpayuTJk3n55ZcBeOihh3j00UeZPn06t9xyCzt37sTPz++w8Vx99dVceumlPP/88wcs37BhAzt27GDIkCEA2O12kpOTuffee/H396eqquqA7devX8+tt97KjBkziIw8oCgBiI+PP6Bpbnp6OvHx8TWPq6qq8Pf3P+L/TQghhBBCiNORxqioCrQGSgJK3U/D0uAFBQURFxdXM3JtYWEhM2fOpF+/fowePZp77rmH0tJSwBj1atKkSfTu3Zu1a9eydu1aLrroIiZPnszMmTNJTU0lNTWVVatWHbYf6EUXXUSPHj344osvjhhP//79GT16NNdcc80ByydPnszzzz9f8xyZmZlkZmaSlpZG27ZtSUlJqdl2z549XHbZZXz55Ze0atXqgOMMHjyYjIwM4uLiCAkJYdmyZWitmTRpEhdffHHNdtu3bz9is14hhBBCCCFOVy63UQMaZA2iwinzgEoC+i9MmjSJF198kS5dunD22Wfz3HPP0bx5c+666y4GDRpEz5496dChA/3798dkOvBfnJqaSlpaGn369KlZlpycTGho6GFHnn322Wd5++23cbvdh6wDo0nwo48+SlTUgWM6TZkyhUsvvfSAZZdeeilTpkyhTZs2lJSUYLPZAKNWtqCggLvvvpsuXbrQo4cxWrLb7SYlJYWIiAgAPvroI2699VZatGhB8+bNa/qKOhwOUlJSavYTQgghhBBCGA6oAXVIDWhdDkJ02mjXrh3z588/ZLlSiscff5zHH3/8iPsmJSUdMHjPPqtXrwagd+/eByzv3r0727ZtA2DixIk1yxcsWHDY45eVlQGwa9euQ9a9/fbbNfdvvvlmvv32W2699VbGjRvHuHHjDtl+8+bNjBgxoqZpbY8ePQ7oq7rPL7/8wuWXX47FIi8nIYQQQgghatvXBzTIGiRNcJEa0NPWXXfdha+v799u06FDhwOS1iNxOp088sgjdRWaEEIIIYQQDca+UXADrAE4tROHy+HliLxLqqxOU35+flx//fV1cqwrrriiTo4jhBBCCCFEQ7NvtoxAayAAFc4KQs2h3gzJq6QGVAghhBBCCCFOkNpNcEHmApUEVAghhBBCCCFOkH01oAHWAEASUElAhRBCCCGEEOIEkRrQA0kCKoQQQgghhBAnyMF9QCUBFccsKCjogMcTJ07k3nvvBeD5558nPj6eLl260KFDB6ZPn37I/hMnTiQ6OpouXbrQpUsXbrjhBqZPn85rr71Wc4w333yzZtvMzMwTfEZCCCGEEEKIE2FfDei+JrgVjgpvhuN1MgruCfDQQw/x6KOPsmXLFvr3709ubi4m04G5/lVXXcWHH354wLKLLrrokGNNnDiRDh060Lhx46N+fqfTKXNyCiGEEEIIUQ+4MaZhCaooAaQGVGpAT6C2bdtisVjIz8//x21r16Lu8/3337Ny5UpGjhxJly5dqKysZNWqVQwYMIDu3btz7rnnkpWVBcDAgQN58MEH6dGjB++9994JOR8hhBBCCCHEsdEuowY0cNbTgCSgp3Q12et/vc7Wwq11esw2EW14otcTf7tNZWUlXbp0qXlcWFh42NrL5cuXYzKZiI6OPmTdt99+y6JFiwB44IEHUEodss3ll1/Ohx9+yJtvvkmPHj1wOBzcd999/PTTT0RHR/Ptt9/y9NNPM2HCBADsdjsrV648ltMVQgghhBBCnEAu7QQgyG30BZUEVBwzf39/1q5dW/N44sSJByR+77zzDl999RXBwcF8++23h00uD26CO3HixH983m3btrFx40aGDBkCgMvlIi4u7oBjCiGEEEIIIeoP7TYS0EBtNMWVBPQU9k81ld6yrw9oXdNa0759e5YuXXrY9YGBgXX+nEIIIYQQQoh/z+VyABDgdmM1WSmqKvJyRN4lfUDrueDgYGw2GwCtW7cmLy+vJgF1OBxs2rTJm+EJIYQQQggh/sa+GlCLhlj/KLIrsr0ckXdJAlrP3XTTTdx555106dIFl8vF999/zxNPPEHnzp3p0qULS5Ys8XaIQgghhBBCiCNweRJQBTSyBpNTnuPdgLyszprgKqVSARvgApxa6x4HrVfAe8BwoAK4SWu9uq6e/2QqKys74PFNN93ETTfdBBhzeP6T2tv/0zFGjBjBiBEjah536dKFhQsXHnLMBQsWHE3oQgghhBBCiJPI7UlATUAj5cOaCklA69IgrfWR5hwZBrT03HoDH3v+CiGEEEIIIUSDpD2j4Jq0ppEbcipycGs3JnV6NkY9mWd9MTBJG5YBYUqpuH/aSQghhBBCCCFOVa5aNaCxWuF0OymoLPBuUF5UlzWgGpitlNLAp1rrsQetjwf21nqc7lmWVXsjpdTtwO0AsbGxhzQtDQ0NpbS09LBTm4j6w+VyYbPZ0FpTVVUlTYQbiLKyMinLBkjKtWGScm2YpFwbLinbhqmsrIzd+TsBMAM+eQXgC7/9+RtNfZt6NzgvqcsEtJ/WOkMpFQPMUUpt1Vof2lnxH3gS17EAPXr00AMHDjxg/e7du7Hb7URGRkoSWo/ZbDaCgoIoKCggLCyMrl27ejskUQcWLFjAwe9JceqTcm2YpFwbJinXhkvKtmFasGABiTHxsAUUmnbBQWCH+DbxDGw60NvheUWdJaBa6wzP31yl1I9AL6B2ApoBJNZ6nOBZdkwSEhJIT08nLy/veMIVJ1hVVRV+fn74+fmRkJDg7XCEEEIIIYTwCu12AWDWEGuvBIx+oKerOklAlVKBgElrbfPcHwq8cNBm04F7lVJTMAYfKtFaZ3GMrFYrycnJxx2zOLEWLFggtZ5CCCGEEOK0V3salpAqG/hBqb3Uu0F5UV3VgMYCP3qaxFqAb7TWM5VSdwJorT8BfsOYgiUFYxqWUXX03EIIIYQQQghRL7n3jYLrG4q5sgT/IH8qHBVejsp76iQB1VrvAjofZvknte5r4J66eD4hhBBCCCGEOBVotxsAc0AEVBQSaI2kzFHm5ai85/ScfEYIIYQQQgghToKaJriBUVBdSqAlgHJHuZej8h5JQIUQQgghhBDiBNGeJrhm/0jQbgIsfpKACiGEEEIIIYSoey7PKLgqMBKAILOvJKBCCCGEEEIIIeqeW7swaw0BUQAEKqskoEIIIYQQQggh6p52u1AAAUYNaKAyU2aXQYiEEEIIIYQQQtQxl3Zh0kCgpwYUExXO03caFklAhRBCCCGEEOIE0W4XZvT+GlCN1IAKIYQQQgghhKh7Ln1QE1y3G7vbjsPl8Gpc3iIJqBBCCCGEEEKcINrtwqwB/3DwCSKo2hiA6HQdiEgSUCGEEEIIIYQ4QYwaUA1mK8S0I8CWA0C5UxJQIYQQQgghhBB1yK1dmAFMFohtT1BxOnD69gOVBFQIIYQQQgghThCt3UYfUE8CGlhtAzhtR8KVBFQIIYQQQgghThCX2zMNi8kCsR0IdLsBqQEVQgghhBBCCFHHtHZjQoPJDDFtCXRr4PTtA2rxdgBCCCGEEEII0VC5tMuo9TNZwBpAkNkXgHL76ZmASg2oEEIIIYQQQpwgWruNaVhMFlCKQL8IAErtpd4NzEuOOwFVSiUqpeYrpTYrpTYppR44zDYDlVIlSqm1ntuzx/u8QgghhBBCCFHfubTbmIbFZDQ+DQqKIQITu0t2ezky76iLJrhO4BGt9WqlVDCwSik1R2u9+aDt/tRaX1AHzyeEEEIIIYQQpwS3dhvTsCij7k8FNaJlRQHbi7Z7NS5vOe4aUK11ltZ6tee+DdgCxB/vcYUQQgghhBDiVFczDYtSxoLAaFpXVZFSnILL7fJmaF5Rp31AlVJJQFdg+WFWn6GUWqeUmqGUal+XzyuEEOLUlVaaxoBvBzD0+6FklmV6OxwhhBCiThmDEKn9C4JiaFVRSrWrmj22Pd4LzEvqbBRcpVQQ8APwoNb64B61q4GmWusypdRwYBrQ8gjHuR24HSA2NpYFCxbUVYjiJCorK5Oya4CkXBsmb5frvNJ5FFYVAjB+/nj6B/f3WiwNibfLVZwYUq4Nl5Rtw1RWVkZ5RTkmTU35Ns4soZXdDsC0RdPoGtjVixGefHWSgCqlrBjJ59da66kHr6+dkGqtf1NKfaSUitJa5x9m27HAWIAePXrogQMH1kWI4iRbsGABUnYNz+lYri63i6cWPcWgJoM4L+k8b4dzQni7XKfOm0qiM5FqVzW2EBsDB3gvlobE2+UqTgwp14ZLyrZhWrBgAb42P0zlan/5bi6lKuVTAAISAhjYeaDX4vOG405AlVIKGA9s0Vq/fYRtGgE5WmutlOqF0fS34HifWwghTrTpO6fz2+7fWJ+3niFNhmA2mb0dUoPi1m5W5axicJPBVLmqWJW9Cq01Sql/3lkIIYQ4BWg8gxDtExSDn9YEm/0oqDr9UqK66AN6JnA9cHataVaGK6XuVErd6dnmcmCjUmod8D5wtdZa18FzizqUX5mP3WX3dhhC1BsVjgo+WPMBIT4hpJelsyhjkbdDanC2F22n1F5Kj0Y96BHbg9zKXG6edfNpOzKgEOL04HA7mLBxAlllWd4ORZwExjQsB/YBBYi0BFBQKQnoMdNaL9JaK611J611F8/tN631J1rrTzzbfKi1bq+17qy17qO1XnL8oYu68MC8Bxjy/RC+3vI1l/x0CaNmjcLhcng7LCHqhYmbJpJXmcd7g94jxj+Gb7Z+4+2QGpx5e+ahUPQNb8vZjfowuMlgdpXs4rbZt7GzeKe3wxNCiBNi3IZxvLPqHZ7880nc2u3tcMQJ5tZuTLVb9gQ1AhSRmKUGVJxe3NrNvL3zyC7P5rW/XqO0upT1eesZu2Gst0MTwuu01ny95WsGNxlMj0Y9uLL1lSzJXHLaThp9osxJm0O30JZEvd+DqPe68m7rm/jivC8wKRO3zLqFlKIUnG6nt8MUQog6s61wG2PXjaVpSFNW567m/nn3k195yLAoogHRWh84Cq5PADTuQmRlmdSAitNLbkUuAA90e4AWYS24us3V9G3cl5m7Z3o5MiG8L6Msg1J7KWfGnwnA5a0ux2qyMnnrZC9H1nDsKt5FSnEKQyvt4BsCZl9YMY6k0CTGDx2PSZm4dPqlnDXlLEqqS7wdrhBC/GvfbPmGkb+O5N1V7zJ60WhCfEP4MnowD7a5gWVZy3h28bNorcmtyJUa0QbIhRuH082nf9Rq2dNsIJFleRSchj8+SAJ6GttTasw71D6yPT9c9AOje41mYOJAUktTSS1J9W5wQnjZtsJtALQJbwNApH8k5yWdx08pP1FmL/NmaA3G7LTZKBTn7F4Bna6EjiNg41RYOoZmPmF8MewL2ke2x+awSXNcIcQpa1fJLl7961UKqwoZv3E8mWWZvKhiCf/9eW6Z+x4P+SXxZ8afvJr1KoO/G8zwH4bJnMgNjFu7UVrx6oyt+xc2G0iky4nNUUa1q9p7wXmBJKCnsTRbGgBNQ5piUiaUUgxIGADAH+l/eDM0Ibxua9FWTMpEi/AWkLUeKou5tu21VDgruOv3u/h47cfSZOo4ON1OZqfNpqtvNDH2Suh+E/S6A8wWmPUUvN+VxE2/8vqZLwOw17bXuwELIcS/tDhjMQDjev4f04dOZG5Yf87aPAvOuBeaDeCabYu5z1aFf2UO15bYyCjP5NfVH3s5alGXXO79Y6/mlFYZdxL7EOkylhdWFnojLK+RBPQ0tqd0Dz4mHxoFNqpZ1jioMcmhySzPWu7FyITwrnEbxvHJuk9IDE7Ef8uvMHYAfHMlHSLacl/X+yh3lvPxuo+5Y84dVDgqvB3uKWdD3gZ6ft2THUU7GJK3F1qeC406QqMO8OQeuGsJNO4CM5+g8ReXYAL2lqZ5O2whhPhXFqUvJBkr8ROGkfzp2QT+NRZ63gZDX4Krv8Z01xJuj+zJNwVORrcbRTuHm0W7Zhx6oNyt2D4bBKVSO3qqcWHUgAL8viXHWGj1I8o/CuC0G4hIEtDTWFppGonBiZiU52VQng/2CrpEd2F9/npkphxxuhq3YRwA/UNbw493QlgT2LsclrzP7Z1uZ+pFU/n4nI9JKU7hmcXPyHvlGGiteWf1O4T4hDAqpB0XF+bCWY8duFFse7h+GlwzBWtoInEOJ3tz1nklXiGEOB6l9lJWZq/gzJICOOtxGPys8fk2/A3YNypqRDJc8w0reo2Bc57jzJjurKOK0m2/eA6SCfYKVv3xAv2teexc9ZnXzkf8O26twTMI0caM0prlkaFNAU67gYgkAT0B7C47P+/8ud7PqbmrZBdNqivg07Ng5lPwfjf4sCedLaGUVJeQWprq7RDFKcjpdvLFpi9O2eapDreDCkcFd3S8nSc2zIWQOLhtPrS7GOa/AtkbATgz/kwe7v4wc9LmMHXHVC9HfepYlrWMFdkruN3hx8Ob/iC47UWQ2PPQDZWC1sPgyi9JdDrYW7JLBiKq537c8WNN32khhGF6yk/YtYsLzREwcDT0fwSaD9qffB7GWT3uwaUUc+c8Bl9dDm+3hVfi+CNzMS6lWLNr1kk8A1EX3NpdMwbujhxbzfLIiFYA5JZneyEq75EEtI653C7un3c/Ty16ql5flKaWpJJWmkavrG1QlgvLxoDFB5Si8+opAKzPW3/S45qdOps75txBqb30nzcW9dL327/nzZVvMnb9qTmdT15FHhpNI3s1FO2GQU9DQASc/w74hRk1ok7jx6Ub2t1Ai7AW/Lb7N+8GfYrQWvP+qneIcyuu2LMRWgyGc1/5+50CI0k0B7KhOp9zvjtHBuaop9bkruHZJc9y86ybSSlK8XY4woukRch+WmumbJhAp6pq2vW8G0xHd9ndOa4XLQITmBxgoTBrDeO7XMCsjhewPCgEgG0VmVAgA7OdStxo0IrkqEC259hq3iexsZ2IcTqZt+v0uo6QBLQObCvcxorsFbjcLuakzWFxptHZfE3uGi9HdmRz98wFYLDNBue/BSN/gJt+gyH/oVnOdoJMvic9Af0z/U+eWPgESzKXcO/ce7n0p0updFae1BjE8al0VvLh2g8B+Hnnz5Q7ylmTuwaX2+XlyI5etudXyEbpq8BkhVbnGSsCI+Gi9yFng/Fr9ITzUJunMShxEKtyVknt3D9wuV08s+gpNhZu4a7CAnyunARXfw2hCf+4b3RIIgBVripmbv3fiQ5V/AufrPuEcN9wfM2+3DHnDr7a/NUp2wpC/HsVjgoum34Z76x6RxJRYGfhdtKq8rmUIGOgtaOklOKajqPYYoYL4mN5t2Q9j5atZ7PFWL/N1x9+uhcclZCfAis/h20zYd7LkLkW0ldJglrPuLRGoeiUEEpplZNcmzHqrTmmLSNs5SzOW3Na/XgnCehx2pS/ict/vpybZ93MTzt/YvzG8SSFJDG06VBW5ayqtx/AC9MX0tYnkjiXCxJ7Q8tzILoVtLsEU0RzWrtgW9HJaUqVXZ7N3b/fzcMLHqZlYBx9fWNYk7uGlOIU1uauPSkxiLqxMnslJdUl3Nn5TsocZZz3w3ncMOMGxqwdU7NNhaOCOWlzcLgdXoz0yHIqjMEBGm2bA83PBv+w/StbD4MR442/lUXw3U0MzNiMS7tYmL7QOwGfIhbvnsn0Xb9wW3EJl/R9xqj9PEpXdhjF/5VW06HazozN35zAKMW/sS5vHUsylzCqwyg+HfIpLu3i9RWv89Haj7wdmjjJJm+dTEpxChM2TuCLTV94OxyvW7bB+B+c2etBMFuPad9LW1zKPV3uoU/jPnw9/GsGNzE+M1uEtWC7fwDuPUvg7XbwUR/45UGYfBUs/K8xaN64s+GD7rD19KpVq8+0pwa0c0IYANv3NcONbs1llU78gMt/HsHSjKVei/Fksng7gFPd2PVjCfYJJtgazAdrPiC/Mp8X+r5AlauK2WmzySzPJD4o3tthHkBrzY6iHQxzmiGqFQRG7V9pMkPna2izbgxTLdtwa/f+QYpOkGkp0/gz40/OMofzwqalVJkUX0XH85UfrExfTJ+4Pqi/6Ssh6o+lWUvxMflwS4dbSAhKYFbqLCqdlYzbMI5SeyldYrrw4ZoPySjLYFT7UTzc42Fvh3yI7FJjuo/YdiPgvNcO3aDj5cbN5YDZz9Bh+ScktGjLt9u+5cLmFx6waaWzEoXCz+J3MkKv135d8R6hLhd3DX4X1eGyY9o3sv0Irmw/gqrpN/JG0WrSd88nIXnQCYpUHI1KZyVvrXyLzLJM0svSCfMN5aotCwjIz2HOJT/z2JL/Y/7e+QxIGEBmeSZDmg6pGe1RnBr2DcZ2a8dbD1mntWbG7hkkhybTNrItAFsKtjB+43jOjD+TIGsQb616i/l753Nbp9voF9/vpMZeXyzbM5+mTjdxna455n2tZit3dr6z5vEbA95gTc4a9tj28J+l/yH1is9otnUOBMVA6+FQshcSe0H6SvANgT9eg6m3wS2zjYHdhFcZNaAmOieGAbA1y0b/ltHgG0yjIS8zdeYjjGzciJ+Wv8EZl9XfLnx1RRLQ45BTnsO8vfO4vdPtON1OJmycQGxALBc0u4DdpbsBWJWzqt4loLkVudgcNpoXlkKrKw7doOPltF7xDpWuKvba9tI0pOkJjef3LVPoUlXNmJzNcOZDEBjNEzOfZG3jWMZu+YJf02bz1QXfyMXLKWBp5lK6xnbFz+LHxS0u5uIWF1PhqOCV5a8wLWUa3277libBTRiUOIjPN33OuUnnYjFZaBbWDKvp2H4dPlGyC7YQ6HYT3Pp88A8/8oZmKwx7HVN5Pjekz+MVVzmrc1YT5hdG0+CmpJelM2L6CNzazdsD3ybKP4rH/niMCmcFYwaPoUNUh5N3Ul5WtGwM8yszuCCwKdZjTD5r69vjPpgzihVrx0sC6iVaa26aeRNbCrdQ5ayidURryh3l3GeJI2DjNGAa1nWTOSexA3Mr87l33r0AfLn5Sz4/93NiA2O9Gr84srW5a1mft552ke2wmCy8v/p9NJr8ynx6xPagT1wfgnyCAPhw7YeMXT+W5qHN+eicj9hUsInnFj9HkE8QT/d+mtiAWCL9IlmYvpAH5z/IF+d9Qfuo0ysJcpXlsNJVyvkhzY+59vNwrCYrveJ60SSkCRaThSllKTw14sDRcLXWqIhmxoO4TvDZ2cYgRhd9YLR0E17jxhgFNzHcn+SoQBal5HPbWZ6y6n4TCQER9Fv+MguLt+Eqy8UcFOPVeE80aYJ7HLYWbgWgf3x/zksy+ond1P4mrC47LdLXEeITwqqcVd4M8bB2Fhv9AlpWV0LvOw7dICKZ1qHNgf3neCIUVhbw9C83sK26gHP84uCxFGN48j53wfMltLdGAJBRkcUXS14+YXGI46e15u1Vb5NSnEK/xgf+0h1gDeClfi8x94q5jBk8hu8v+p5X+r2Cv8WfhxY8xOU/X86wH4bV9L30tpySVBo5nca8lEdjwONcXFJMtPLh/vn3c/G0i5m0eRJj149FAXGBjXj9r9e5fc7taDQVjgqmpUw7kadQr1TtmM0NGz7AZTJzef//HNexmsd1JxwzK3NWgaOqjiIUx2J70XZW566mc3RnPuj3Kt/1eYm5za7nyo2zoe/9cOPPEBDJWZt/J0grBoS2ZkLsEPLLc3lr5VveDl8cQaWzkkcWPMIbK99g1KxRXD/jeoJ8gjg78Wy+2fINDy14iOt+uw6b3UZKUQqfrf+MFmEt2Fmyk+FTh/PwgoeJ8I/gi/O+IDE4ER+zD6N7j+br878m2CeYd1a/4+1TPOlS1nxOuclE1+bD6vS4jQIbcUGzC5i6Yyp7S/eyMH0hd/5+J2+tfIuB/xvIzzt/ZsrWKXyZPhd97f/ANwi+vhz++gyyPNNZ2SsgewOs/w42T4eDx2moLAZb/fhObijcAFrh52Pm7DYxLN1ZQHm101ipFLS7mP7d7qDYbGLDT7eB2+3NcE84qQE9DjuKdwDQ3CecYN8QfrjoB1rgA2N6YyrZS7cO/Vids9rLUR6qJu7GfSCq5WG3ad7qAiy7v+TTNWNICE6gfWTd/3K5YPnbTC9YQyuHi+FDXzuwrx1wU+8niFn+JjucNr7dO4e7yvMICIyu8zjE8duQv4HPN37ORc0v4urWV0HaUmjcFaz7m56G+oZyVsJZNY+HJw/nhx0/0CaiDduLtjNl6xQe7P6gF6I/UHZFLrFuBWFHWfMf3ZqAPnfz9uqx3BpvtHaYvPkrcqvyudZWSdvcPJ6KDCHOGsr4nALeCoBvt33LjqIdjO49mjYRbU7g2XhZ8R4WzH2SVH8r7/b/L+0a9zquwyml6BHViZVZK2D5J9DvwbqJUxzCrd1orTGbzDXLyuxlTEuZhgnF6/YAIqbcCo4KY2VCL+MHRLMVbptHyOpJzP35fgJS0wC4NjyMCe4ZXNXmKqbumEq6LZ3bO93OmfFneuP0xEEmb51MbmUu7w56F6vJyqaCTXSM6ki/+H5UOitZlLGIx/94nMHfDcbf4k+ANYDPhn7GqJmjCLIGcWfnO+kS04VQ39ADjhvhF8GN7W7krVVvsS5vHZ2jOwOwJGMJ3WK7NejuCWt3zgAFXVpcUOfHvr3T7czfO5/rZ1xPmaOMalc1izMW42/x56lFT9Vs12jg2wy5YyF8eSn89qixMCAKKg4aIKzJGXDjL2C2QNZ6+OZKcDvhvlXgd2CZin9He2pAA6xmBreNYfyi3SxKyefc9o1qtjmjzeVY173PrIK1dFn4Bgx8wnsBn2BSA3octhdtJ843nOD3u8N/m9MqayumaXcbvxxFtaJ7YRappan1biTAnTlriXC5iGh9/hG38W13CfcWFZNfupeXFj17QgZT2rJ3EQFuzXc3rSW6yRmHrE9odym3j1rMJT3up1Ip1q6UAS3qq59SfsLP7MeTvZ7E76/P4PPzjEERAIr3wsGvH3s5I9uOpFloM17p9woDEwbyY8qPXp87V2tNmsNGok/YUQ+XD8DZ/0eXRj1ZuDuVe4uKyarMxeJ2c7PdyrDgZjxZUMTnuzYTb/JlcLEx2fTq3NV8uOq9E3Mi9UHmGhjTh18pI8YnlIFJQ+rksL2aDyfTamHn0negcHedHFPst7lgMzuKdnDtr9dyxuQzeH/1+yxMX8jnGz9n6PdD+WrLV/SoqiJizTfQ4hxjUK4rv4Trpx7YzLDLSAJ63w2XjoXHdnJTeGdCXG5GzbyJ31Kmk5O5gnt+v4sf1k/w3skKAErtpYzfMJ7+8f0Z3GQwZyWcxV2d76rpt+lv8WdI0yF8MuQTRrQcQdvItjzR8wmi/KP47sLv+Pr8rxmQOMBIPp12+O1xWDu55nP/itZXEO0fzaN/PMrkrZON6dZ+v4NP1n3izdM+sWw5rCvfS6TJj/jgfx7p+1glBify6ZBPaRXeigEJA5hw7gTu6XIPs0fM5tNzPmXGZTNoEdaCd1e9i8NsgeunGQnmsDeg1bkw6Bm4/HO4czEMfxP2LIX5L0HaEpgyErQbyvNhwevGgHsl6eByHvpdLo6aG1AoLGYTPZMi8LGYWJlaeMA2ob6hDG46lJ9DI6j+4xV4PRlWjIflnxq11g2I1IAeh5TC7bS0FUB4Epgs8P3N4HbAJR+Ds5oesx+H+EYsz1rO+c2OnOydbCn5G2lhd0Czv+lDFd2aW2L7EZi9iJdxsm7PQro0HVB3QRTuZltFNq2DYzFZfP52067tr8G87j1WpvxC335PHXNfCke1Dbe9DN/gOB6ccRNhPqE8P/jAC/9HFjxCXGAcSaFJJAYn0juu91Eff2H6QtpFtjtt+6iuyV3DjN0zOLvJ2QSXZsOcZyEkAdZNhvQVUJACbS+CbjeCbzAsfg+2/UbLAY/z08XTQClGth3JvL3zGP3naPwsfjze8/FDfkk/GXJK0ihTmhahzY5tR6sf3PgzATvmMHDzd3xY+hdX2MqJunwKhDVh5I93QKth0Os2Bi9+l9tWv0e+2cyPmYvYUbidlp6JqBsMezlMvpaZYZEsCjAzssUlB9SkHY9zmp7Dq8tf5Td/X+6bfA3c8QdYfOvk2Ke7kuoSbp11K5XOSpzaSYfwNny2YX8fs2SfcO51BNCnuAge3AjBf9Of02SG8/bP8Rp2xSQ++fpCnnLlcbfTn/4xvXkk7w+eX/MOGSkzGXXms0xd+T6X9fs/gkMTT+RpioNM2jSJUnspD3R74MAVVaVG00DfYAB6x/U+8LuxqgQ/iz/sG6jQWQ3T74P13xqPt/0KXa4jMOlMxgwewx1z7uCV5ftfE1O2TaFHox6E+YbRLrLdCR/w8KTaMp21vj50ie50wgZRbB/ZnrFD98+33bNRTwD6xvcF4KHuD3HP3Hv4fvv3XNPmGkjub9wOFtsetv4Ki94xbigKr/ueio3fkbBsDKz5EqpLjXJO7AMj/2e8JtwuY5kMEnlU3GiU5zVuNZtoHRvM5qxD57wf0WoEM1Nn8nuv6zg/fQv8um+wRgW9bz+JEZ9YkoD+S9WuanaXptK/wgYXfGD8WvTVCOg+ioykS3GWF9POPZoo5cO8PfPqTQKqtWZnZS6X4HvE5rc1rp3CRamLGDPvDl6aey+Thn1FQFzn4w8icw3ucUPYlhjLxbHd/3HzAJ9A2gfEsaIoFSaca/yS5xdydM/lqOLprwawg2pe6/YYc3NXYdWah0rSCfXMP7i1YAuz02bX7BLqE8x7Z39As9BmhPv9zSA0wK7iXdwz9x6ua3sdT/RquE0lDqfMXsa7q9/l223f0jiwMbd1vA2WfWb8QHDrHFg5ATJWQdO+sPYb2DLd2NE3FJoNhD9eh/ztsGsBvfwjGNFhMD94yqHcUc4r/V4hwBpwUs8pZdcsAFok/ItmgSYztD6P1k168/F3V9Ft0J3GiIQAN/xUs5lfn3u43+2muHQPM/PnMXHhM7x8ST2b27KikI3fXEyoXwSJl44/cKTso7Hhe9bb83ksqhFdojoyqsOoOgstyj+K3nG9+c13O/duXYP66zPoe2+dHf/vuLWbldkrSQ5NJjrA6A5Q6azE1+zbIC6eJ22ehM1hI9jsR2O7m0mrZ/NcYnMiNFyTnUqMcw/W4DgY/MLfJ5+H4x9Gh5sXMH33H8bUXz6BfJC/nZdn3clnti38+MuV5FvMZE+9kieGfcamxW+wszyTc7reRkCHK+Qi9wRxazc/7fyJsxLOorVPuDGXZGCU8Tk+ZaQxz2TvO40f2pP6QUicsePi92D+q5DYEwY9DblbjGbxeVth4Giw+sPcF2HLzxDWhLbXTGHulXNZlrmMhxY8xPnNzmdayjTu+v0uAC5pcQkv9H0BpRROtxOL6dS+PC3Y+B17rVauSPDe6L/94/vTs1FPxqwdQ6vwVnQ/0vWWUnDlJMjdDAU7cVqs3LllLPn2PGY1OQOrvQw6XG70CV3xGXzSD0ITjdF2Ww019hX/SAOmWg1P2zcOYeambGPgqFqfb70a9SIhKIEfTJWcf8NPxrXU/Fdg04+SgB5MKXUe8B5gBsZprV87aL0vMAnoDhQAV2mtU+viub1lWeYynNpFD6cJW6PefLUim9i+0/hiq4l1i+cB8GviQAaVrebXjEVUu6rxNXv/V/osWzoVuGke0RIN/Gf6JvJs1ZzXoRFWsyLYz0qv5AisZuNNEpDUj1e7PMDd699n3Ox7uP/GRYc/cGkmbJwKna+BwMi/jaFi41Q+DAumwmSiTZPD/Bp3GD2bD+eLjZ+zMmszPX6805jA/uALkqI0KNxp1Oymr4DC3WSmLmCW2Y5bmXho1WuYLBYcSnHj1PN5uuU1tGh5AR/Pfwg/t5sArQl1udmjS7lp5k2EWIN5Y8CbBPoEEh8UT5R/FN9v/57vtn/HqA6jSLelszJ7JWCMdmx32fEx/31tbkNhs9u44ucryCzL5Lq213Ff1/sI2P0nrPkK2l8KIY3h7Gf27zDkBcjZDKUZRrM9/3CYfI3xgdqoE5Rm8OSOVfQ5+yX2FO/kg82fM/B/AxmWPIynej910t47KXsXA9CipdFnZ1u2jS1ZpdiqHPRvGU1SVOA/H8Q/nH43zD7yeqsfDHiMMLebEV8OYErxZi5c+iYTd//CS+eNIyqiRV2cyr+XsZrs6Xcxyq+c0OoCfvh6BKG3zDX6Bh0NrdErx/FmbGMi/cL5dMindf5DwiUtLuGJP59gdvPenPvHf415WSOb1+lzHMzhcnDrrFtYnbeGTlEdmDTsK95c+SZTtk4hKTSJN856gxbhXi6741BUVcRXm77g3PJKnihIx6osWAc8wSurJhpTOvR9BJLPOnwNytEymY25dT2sUa147tq5xC95kQ9SviPJGsIUewmm/53PpFDjR8bPl/0f768aT+I139fUxNW1oqoiTMp0SKuL/Mp8fkr5idjAWM5PPr9BTge2Pm892eXZ3N/2Jhg70PiM3scnCCJbGE0zwXgddL3O6Bv411iI7w67Fxo3gIjmcO3/jCaeYFwPZK41akWnjMR6xx/0T+jPwqsWEmDxZ1T7URRWFTJ/73wmbppIiE8IbSPb8sLSF3iw24Nc2/bak/ifqEOlmazLXw+x0XSJ6eK1MJRSPNvnWe6Zew93zLmDHy/+kcRgo3WBy+3ij/Q/GL9hPAVVBTzQ7QGGJQ+DJn34dsvXbCncAsD8QW8a848qxc6SnfgldqXJX59DVQm6SR/Y/BNq2wzjM1j8LTfGNCz7tG8cwpQVe8ksqSI+zL9muUmZuKzlZby/5n1+SJvNpX3vw+SoggWvGk2hQ+u+Sbc3HHcCqpQyA2OAIUA6sEIpNV1rvbnWZrcARVrrFkqpq4HXgauO97m9ae6euQS5oWejPlwxYQ0bMkoASI4K5Jnz27Ips5QX13Xn/tD5fBfoy3ur3+OxHo8d9xfYwb+UHKuUXcaFcVJ8P96YtY2JS1IJD7Dy64asmm3aNArm/Wu60irW+LLv1+12eqX8wIKSVO7PWA3x3Q44pi1tLX4Th2LV1WRlZxB32at/G8OiPb/zZWgQwT7B9IzticPlZn16Mb4WM2kFFZRVO+jeNJxqp5v2jY0LguvaXce8vfO4W5n4JWUmMcs+NmqdfYONLzmzFf53vTHCW/OzKcvbQlV5DlNCQlBhobQISiC1LIPbW13J3NTZ7LAX8vD2SQRu+4IMi4VbfOO5LrQdQcrKgu1TKXFVMTnUyZPzH6TUXc3QxLM5t9kF/GepMYrny8tepri6GAALJrYUbqH7V915pvczXNXm5L60j/c18W98su4TMssyGTd0HL3iesHeFcagBdFtyOz8AKvXZ9K3eRQRgZ6E3D8ckg6qVbx4DKwcDz1vhbQl+H07kvP+dxc4yunR+TKm+yp+2DEVf4s/j/d8/KTUMKUUbScSxX0/ZJNdksrOvDLcni4vAT5mXh/RiQs7Nz6u53C7NSaTApOJG4Z/wpRfr+LerZ9TbTIxc/bDXNfpVmhzvnGxfrJpTebXI/m/ELArH3LNJt6p2MPzE883yq/7KOPHhb9rdrVzLrvzN7MmoTFPdLz1qJLPP7bn8epvWwjytfCfi9vXvO8Byqud7C2qoE2j/a0ezk06l882fMb7jnLOMZkxf9wXAiKh/8PG6+lYrP8frJ5kJFcDHj9k9bJVn/LWxs+oNpvZ7apgeFk5v7GRO2bfxvKcFQzzT2BJWSbvrX6XDwZ/CBg/0ARZg06ZhMWt3by7/DWqnFXc7fQnesgrEJ4Mrc+D/o8aXUyOok90Ubkdfx8zftajf+0qpbjtzGe5uudDVDmrGPnzFUxSin4x3bm87UieW/QUV9v3Mm3BS0T3fRicVRBed1ODfbT2Iz5e93FNXzqn28nDPR5Ga83dv99dcyE+c/dMzko4i+ZhzY9ck3SKsbvsjN84HqvJysBln6MrCqm4dBKB/n5QngfxPSCmjdGkPn8H/P6cURvjrIJW58FVXxuPTSbjh9+wpmC2UOVwYTWbjGkkWg2FKybCxPNh3DnQYQQBUa1gxuMkDXiCpF630TWmK9WuaiZtNmrSAiwBvPrXq3y07iNGtR/FsqxlPN37aZJCk7z6/zpqm39ina8PFmWhXWQ7tmaXsi3bxvLdhTSLCmREtwTCPd+NdqcbH8vRf7fZnW5WphbSu1kkZtM/f74khSYx4dwJXDjtQu6YcwdNgpvQs1FPftjxA3tte4kPiifYJ5inFz3NGXFnEOobytdbvqZrTFeyy7P5eus3/G/Hd2wt3IrNbiPCL4Ifrv2BtNI0nv7zKXomJPOfn+6B636AJR/Azvlw1mNwxt3/+t9X3xWW23FrTVTQsf0w7oYDrmPaeb7nNmWUHJCAgtEM97fdv/H80uexu9z4u/txsdkH9esjcM2UBtEiRB3v4DJKqTOA57XW53oejwbQWr9aa5tZnm2WKqUsQDYQrf/hyXv06KFXrlx5XPGdCE63k0GTz+TM4jwuiH2Q61Y2Z8y13WgVG0RyVCAWswmHy80tE1fwQNrd/Naogv8FWnhjwBuc2/Rciioc+y/MPbbn2Ph1fRYRgT6EB/owtF0sZdVONmSUkG+r5ruV6aQXVeDW8J+L2zO0XSwfLdjJj2syiAv1o2VMMA8NaUmwn9E/ssLuxGIyHfLBNmH6jbxTtJoWBf/HmtxALu7SmLev7MKSnfn4WsxklVTy4i9bqHa6GH9jT3olG1OhTFjzMe+s/4h5wb2JvmxczfG2ZuRjGXc2/u5iZoT40bvMimPUIkp3rSOxfQ+SIgOND8nKIqO5zvopfOKnGRMexqOtf+CjeXtwujQF5YcffKZ703AKy+30axHFNX0DGDlzBCOqXDyTmbZ/I4sfBMWwqzyTxVE9uC5rGU9ER7IsIBinAuXuTHjFTfRvGcnatEpCgqro18bGmxuewoTipfZPsyy9PXanm3K7kzhrGZ388gnc+yEPBOYB4IvC3+JPXEUp59tsvBkZjp82cUtFCPHlKTwVYzRR9DUFEOfXipGt7iTG16gN8bWY8bGY8LWYCPCx0CwqEKUgtaCCVWlFRAYZrwWTUrRpFEyovxWnWzN7UzZpBRW0ig0mwNeMr9lEWbWTogo7yVFBOF1uxq4fz8bSOQyNfJo+TVrjazGRX1ZN96bhtI4NZtambBbuyCcy0IfzO8WREB6A0+XG7nLjdGkcLrfnpjEpRUF5NQBxof5kFlcS5GuhY3yokTAB02fPpyo2lJfX3kwz/4Fc2PgBOvrl0WnJ/bgqCni71VdMWJGPW0NUkA/nd4wjwNdC7+QIEsL9AcWqtEI2ZZaSHBVI96bhzN+aR7XTxWUhW2iydQJFpjBiUn9GoXklIpzJocGEqUjaW/+PzCIXN/RuR59mESSEG4lNbmkV23PK8LOaMJkUCeH+mJQi2M+Cj9nE7vxyZm3KYX16MXGh/tw5oBkxIYcZebHaxjVf9ADfWJZueYI2jYLplBDK7WcZNWtP/LCeVWlFXNYtnkGtYzAphVJgNil6J0cQFnDge7q82snkv/awO7+cNo2CWZ9ewtytuRRX2BnWIY5qp5vuTcPZVf46M/OXAmDVmrMqKrkhcCDrQi5jb3UQ157dHT+rCbcbyu1OWscGYzIp1uwpYtGOfM5qFU1plYP4MH9+35JDWkEFsSF+hPhZaBsXQnJUYM35bs4spaC8mj7NImtaOQAsWLCAgQMHMufPxXy76Sb+8vOnpeV6Um0puPyW8nWWmbb2NOyRbVDOSlyWAFwDRhPU/jycyz/D7LZj6n4j+ATC2EF8QwmvBsCI6DE0D29CQbmdxmH+lFU5SY4OxNfz3IkRAXy+OJWJS3aTFBVIebWT0kon0cG+OF1unG5NcaUDu9PNjWc0JaukivaNQ7mmdyKr8xfw2MLHGNvtcc7YvcK4QN6zBG75nXKXonTWq1RYw8jvdAeuimKiW/UmL3Ujvr5+hMW3pGLpBKyF22iZ9i25yp9gKigeNhEfHx9CopvgF98e3C4u+LwTVUCFgj5V0KtiIJv8fmNacBC9Kqv4NDuP98NDmRQWygOdX+CXXT+z3baCkc0f5twmF2NSikBfMwE+Ftxas2RnAS1jgkiMCCC/rJqMokpKKh30axnFpoxS2saFsC3HxowNWXRKCCPQ10xcqD/FFXbSiyo5v1McMcG+FFU4SC+qIKOokuToQEornezMK6Ow3E5GcSUhflaq8vfy4IgBhPpb0Zqa9zHA3sIKSqscpOQV8sXGJ9jh3MINJWVsKXuKgpC2JEYE4Gc1M7RdLGc0jyTQx4LJpNCecygot1PtcNWc38/rs5ixIQuLyUSnhFBiQ/24sFMcwX5W9hZWEOpvtK4JC/Dhr92F7Mi1EeRrITrYl5hgP3wsJlalFdEo3MHC7F9Qtn7syXPjMKez3P4MjxYUcWOpzXjPxw0kp8djhDfrVvM5sM/CjTtZv3oZCR0HUlhcCunL8fcPoHHHgYT5W1i2cx5r8mbgNltoEtWTb1P3jwegMOFj8mHpyCWszVnHzbNHMai6N2WWIFaZF+LGAcCNrR4kIbA1viqYNlHJrNybRnxoBL2TYtni6dNld7nZmmVjcNsYEsID2JJVSmZxJdmlVazdU0xMiB/tG4cQ5GshNsSP9KIK2seHklNahcWkWJ1WRGmVk0YhfigFCeEBWMyKxmH+zPpjCUHxrWjbKISkqAAWp+STV2anoKwaq9nE1T0TifRcHJdUOticWUp0sA9Ws4mIQJ+a64Tnl7zADzu+4xpXU57a8yf3OR7gZ1dvkqMC6ZIYRmmlA1+riTOaR5EQ5k/7xiHEBPuCvYzUUsWqPcW0iAmiZWwQZVXG9crcrbn8sCodk1K0bxxCWICVpMhAroraRYsVz6EKdmKMB6pAKcojO1FhCaWw821sCjeTU1YCFe1IqfiDdcVzya3eBUCPiHO5vuVjNIkIoHGYP9UO47tr8c58MooqsVU5aRkbTPem4WQUVRIWYMWtNaH+VrZklbIuvYRgPwuXdo0nxM9KSaWDrJIqdueX0zMp3Pj81pBXVs2Snfn4Wc0kel5bCeH+LNtVQHGFg8FtY2gWHXTo90dt487hRlM+RWGtCCp4mCU7jYHn/K1mKh0ugnwtdG0SRkZRJbvyy2nfOIROCaF0Tghjx/ZtVATEUu1wc2PfJDonhqG1ZkuWjR25Nn5el8nvW3IZ2bsJz1/UHqvZRJXDxdZsG3sLK1i6q4Aqh4udeeWUVzs5p20s57aPZVXxdCZtHo9SisKqQtqEdaRH+MWYqzqRUb6b30ufYGjTc4kJiOarLV+R4ByFQ1eSY50CQJOADgSoRuwoX0CITwTF9nyMIXU0M3NsxFUU4MbEnABfmpsj8b95BUopFqfkU1LpoE2jEHokhbM9x0agr4VNmaXEBvvSOMyfFamFfL18D2c2j2RQmxiSowIJC/DBVuUwPhNC/WgdG0xmSRVzt+SwNdvGpV3jqXa4MZsUk9fPZXHxeFr7XsZV7S7A6dJUOV00iwqiV3IE5XYnZVVOLCbFitQitmWXEhfmX/O52DQyAIfLTUZxJaH+VqKDfXG5NSWVRmWIxWQiu7SKlamFzNyYzZzNObi0JjzAhxYxQfRvEUXjMH9axgbRNi7kgO/W2t+xz+26hxbV0Yy/awFgXKd3e3EO57ZvxHtXdz1kH601w3+4hNzSKmwFHRlZVsVz6ks2DxxH67MuP6ofIOoDpdQqrXWPQ5bXQQJ6OXCe1vpWz+Prgd5a63trbbPRs0265/FOzzaHDA+rlLoduB0gNja2+5QpU44rvhPB5izl953PcH6Fnf8r+S/Bflae7u13yK/dlU7N/BWrea36BS6ITySHKCxZj5JTVU3PmEASg01UOuGPvQ4qnUb78H0CPePslBvfdyQEKRKCTWSUafba3IT4KErtmmahxgt9d4mbKH9F7zgLG/Jd7Cl1E+yjuLmDD11ijIruytwU5uW/yXJfKzm7XuPOzr50iTYfEndBpZs3VlZRUKmJ9Fe43GC3ZOJOeI//5JcQ3fkTKpU/c/c4Cdr1C0+aJzIiuTu7yePBwiK+yX2W0JAwri7/ihl+w2neKJJbM54mSuez1dKGCeEFzPWNpCTlaZJDTUT7K7rGWLCYICZAoTXsKnGTV6lZleOkUYCJTQUuLCYIbPwjrsAVfFCQyBeuKwmuyqSnez2d2croOCepfpr4knhygrNwmow5lCxZd+DvaEZmuSbaX1FUrXG6wT/iL0xuf8qLO2JRYDGBr0VR6dDY3eCLnevC3sPHVMFXsZX4ud28mG6h0BnLW0mZXFJWxuj8EjJMEbwbBS0q/PksyoJTgbs6FnthX1xlrdGuA5uNBVmh2gWOI0zxpACrCezGpFGeJQZz4A4sQZuozh0GShPU4jWUuQq3I4yK1DvQzv19Vv3MUOWCAAuHvL6ORYswE1e19uHPDCeLMhz4xE/CErCL2F0jeUDN4gLTMqqxco/jfua5u9E/3kKfOAu/7baTUuzG4aamFnEfHzPYXfvPV6kDtwmhnGSVxTXm3wkMW8kLkRFUmUz4uDWulAcocTWmaYiJrHI3dtfhz83fAqE+iuwKY22jAEVepXG/e6yZxkEmAiyKPo0thPgoInKXcmv5VwSUtCPAcTOP9TjwPe10a6alOJi524HzoCcMsMCZ8RZiAkzsLHbRKNDEn+lOCqp0TTn4W6BLtBlfs2JxppNQX0V+pUZZCwmInYHJaYHwNQDcUFLKY4XFOLWJ8+yvkaL3N7nxt2DsW6EPiWPf+krn/sdmBQnBJiocuub8wfhM6Z9gJa/CTUW1gxaRvujtvzKj+Rz6BfTmktgb2F2Zztu5r+Nj68fAbD/eshgjlubqMGJUMZtVc9ppY17htQF9CQgMoVXeTIbE9ibTUk35zkNrFA+mgAGJFq5q7UOZXfPzLgcOt8asFCYFARbFrhIX24vchPkqSqqNc4gLdlLW+CWi3R2JKbuS1MIKflUPUOATD/ZyYnQ+wVRiUhqXVmzXCbQ17QUgXUeRoIyvn8+CYnk/ypfOVQ6+yt7fEiSPMDZZW3B/fA5JhW0pyBuGyyeEkIBAmpUu5wL/aaRVt+Ib8zXcbPmAdxONH6sCnWbMaCqdERTufvQfz/9ILCZwHuYzwqIgLsjEXtuR54gLtkKFE1za2D7YR2FzaNpFmmkabOKvbCc5nvdFu/i3yQjO4c6CajaU3kheeA+yytxUOsHu0tg830G+ZvAxGTWWpfZDX3j+FhiQYEEpxY4iF/mVmuLqA7dTgN9Br88jMSnj+8DlhupG7xCuimlU2hiX1cbLpdto7SpjmqsvH/jeidnqQ36l8X042PYOoYEbKSg6m8YBa/guyk6VUlySH8zyQDeLQh34ud24lMKhFO2qq/m/bBc3Jvpj91zQBZeeS5nvGgIsOczbm06A1vxAJ/5QrVkelUF5QA4oN2gT9vzB+ETOw1nekqqM62udrAPfmN8w23pidjbG5vmNVVlKCYr/nuqiHthLO/3zP+IfmJVRzgcL9oEwXxOFVe6a6wgwPnvbRpipdNrJjH4B/7Jklhb8zq/mwcyOvR0/i/H9u7vEjY8ZqpwcUN5hvgpfMzWvn4NZTdCrkYUAK6SVGq+jrHK38Z1rgTBdwlVqLr+7unC1eT5NVC7NTZnEqwImOM8jXUdzoXkpM109mUl7siJ2YPHNwRS4HUdJN6rzzgXXoV0hjvR/ONx6xeG/M460/OBtIv0VTUNMON2QV+k2vsOATtEWzrWuYfieV+jZNInKojPwL7mI85KstI8yExeoyCrXzEp1sNfmJsJPERdoYkeRi8zy/eW07/qvwgGtI0wUV+ma7zGAthEmthS6CfaBuEATGWX79/W3gL9F0ShQoYAthW7c2jj/mABFmasSO6VUV8XUnI+PGcxN3sPst//zzyftBdxuK1UxxiBHlXtuA0yYA7fiE7EEtyMcq603JH6AT0FvRhbBL9G55IftYlB5Bc/lVDPOeT6JKpcy/BnvHEaeijjkWmCfCD9FYdX+lX5m4zpp35JgH7DZweSbiX/cj1Skj0Q7w1DmcgKS38VkKQflpiLtVlwVzUE5QVv/8XVxNGofI8gK/eIt+FuMeDcXuA74Xm0cpLirsx+JwQcmoWVlZfw39wlaVEZxQ/v982F/t83Ob7sd/KevH01C9rcc0dr4Lvw5fyF+jYwxJFpUXcXErI+Z5+rMY657OD/ZyvBkK76W+p2IDho06NRIQGurrzWglGbC58PZ3f4eBv3emA+v7coFnQ7fLM/pcrNi/jSy1z/Ks5GBBLmjKTPl4d7zMOXlxgfAsA6NaNMohJF9mqC1URv6w+p0SiocXNYtAafbzQWdGmM2KaqdLn5cncFfuwtpExfMrf2aYTIZtUoPTFlLRnEl3ZuEc2aLKGZtymZrto1m0YGE+lsZWnY3n8a4CChvwQcXTKB704gjnmJhuZ2npm6g2uki2M+K2aSZX347F1UU0KGwDy86r6eVYyuf+7/HL/FNeNVSDMAF5VXcVxLEp2X9+Y/1CwBmuXow2LyG0SGvMq+8GZUxbxITEMlDHd/g3PaNjqq51ob0Er5btZdthVvYbHqB6vwBhAWaiAoIoanpIiwWB39U341m/0VZjF8i/uZgfrzkGyxmEy63xmxS7C2sZGNmCfO35uLW0CMpnH4toogP80cpqHa6qXa4ybFVMWdzDr44Wbrtelq5E+jR7x3axPiS+80wApoMo+kFz+JXmYt7TC+UxQ9nVQkzoxJ4KthzIWMN5YaWj9E+rC92p5uCMjsrUgsJC7DSNDKQnkkRlFU7MZsUlXYX23NsFFXYybNVExKznOl7JnJti7tR+JBelsas9MnY3dWEWiNBQYm9gOfOeI63V72NvzmY1qFdyapMYUjEM+QUWeiUEMYlXePJtVWxdGcBeTbjF3KrxYTVpLCaTVjMxl+31oT5+6AUZBZXEhXsS2ZxJa/+tpWyauPXw65NdrHV/1PuSLiAexZ/hjb7kNXqelbEXU3r5s1Jjgo8pDyrHC7+2l1YU5PVKSGUljFB7MovZ8nOAoa0jSXA18z8rblklVTRMT4Ut9YkhAcQG+KLuySTuUv/wzNFfwHwuG9H0oKeYfnuQro2CSMi0IeeSRE1NbnZJZW4NfyVWkheaTUXdmnMWS2jaBoZSFpBOZOWpvH9qnRKqxxoDcG+FlrGBnFtxev8J3o3cdXX8t11jxIacPjRlgvKqikst6MxRqQvqXQwYdFu5m3Lxe50E+xnwVblpEVMEK9e1pEeTcPZmVdOQrh/zf9mX7PptIJyflmfxY4cG31bW5iWOgEf33LW56+ghV80QUWp3GYeQFqn//PUtppYt7eYwnI7Qb4WruyZQGp+BSH+VrJKKhnYKoYmnl9zc23V7Mor4/fNOezMKycyyIekyEDaxoWwJauUX9ZnsjOvHF+LCRPGheJrIW/zcnwuL/R9gUtbXgrAA/MeYN7eeQRaArknz0kb/94UnvEE0SveotveieT4JLLOrzdDS78H4CPn+XzSPIVeMQP5dNjrZJdWERHgQ0ZxBSF+VnbllwPG+2xrVimD28bSIubvaxRsVQ7+2l3IwNYx7Cms4MfV6WzOsrHJPhabeTVq79Oc0yaZjjnTuLnQmPB+U6/XCfM3Y909D5/qAgIKNpHb8zHcZflY8rdibz4U3XIAIxffhM1RBsBLwSPYoTTm4gwalWzGz5nKs9GRvNzzRYa3vgizSaGUoqjczvYcG00iA4gL9cdeuJdvJp1FpLOKcxxWvg+w8N+wQMKtUZwTP5LOocOotLuodrrp2iSM9KJKckuriAr2JT7MH4dLM3NjNr2Sw8koriI62Jeh7WLJKqnC5XaTUVxFkK+FUH8Lny9OZV16McM6xJEUGUjjMD8yiisJ8DHTKtZoQRHsZ0VrzZc/z2O3akRuaTXRwb78sCodW7WT/i2jOLtNDBHuNF7YeS+XmyIYfeXPh8z353S5mb05h/SiCrJKqrA73VQ6XHRJDKN3ciR+VhNaQ3Glg+bRgTU1awAOl5vpazOJCPShZWwQ+WV2/tiWR3ZpFWe2iKRnUgQVdhd5tmpybVWUVjrpGB/KrvwyqhwuBrWJISbYqLl/f+U4Pttk1FRaTFZ8lA/3m1tx7bbprPA/k4WWvvRmI285LiMo/BnW+fnwn7wC3o0IJ8A/ApPW7HUY3WQu9W/Jrc1HUpS1msz8DfRucT4Rva7juQm92IudFf7Gc0a74JHCIoZfOA6Vuxm96B1UdSl7LWYuTEwgzBxCrE8Umyt3euqBNEOiHmND2Q8kBbdCAUvzZhKmu9PN7wFaJ5ZQZtrB4uzf2FWaAsD1re6jY/iZVFWGkOdcj6O8Oc2jwnC63XRrEk5kkA+5pdW43Jr0okocbjdZxVWk797OZWf3ZkVqERszSriwc2OaRQUSHuhDWkE5v67PJsdWRW5pFT4WE5d2TaDC7sTp0vy5I4+NmaVYgzeR7vMx7xa5GFhegvnBdYcdbMzt1uTaqkkvqmDZrgL2FFZQbnfRJjaYoe0bsTglnwq7k1B/K82jg+jWNPyQ74Cyaie/rMtkU2YpPhYTTpebwW1jcbrd+JjNhPs4CVn4HxJ3fmO87oLjsdiMvqjVUe3Itu3m8eSubLfn0Ni/JUMjniXY1/ic69cyimZRQfhaTKzPKGF9ejHNo4OwVTlRCkorHTSJCKB703DSiyqZszmH0ioHMcG+WMwmuiSGsTK1kLJqF06XG1+rieEd4yitNFobaQ17iypICPenZUwwk5amklZQwfxtufhbzfRKjkBr4xwXp+Qy2+cJdvm6eTTBykVxT/B/g645qmscrTWpBRUsW7acK4cPotzu5LOFu/h9Sy7Rwb4M79CIbk3DCfPU0C3YlsdPazPIKK6kSUQgg9vGEBnoQ4+kiANqxgrKqvlrdyHr0kvYmVdGVJAvflYTbRoF0zYuhJYxwfhZTXy0ZAF/7l1FmDWOmKAAnh58EVrDvK1ZaKBLYiQhfhZKq5xkl1QRHeRLYoQ/d895mCVZC+gUeDVry78CIN7hZGZ6JgB7rf4Eaxc+fo34rMVHxMU1xoGFljHBlFY6KCivJjSomvHbn+C29k9gsiexO7+cjGKjFrtH0wgyiiv4c0c+7eMDmVE4mt2lO+gcNoQgHx/yq7LZWbaOiedN5ImFT1DpsGNSJoqq8zk37haCqwcTE+JLkK8Vp9tNq9hgujUJJ6+smtJK4xogtaAcl1vTLDqQ8moXW7NLcbg00cG+pOWXU253EexnYVDrGFrEBB3SsrDa6SK9qJJ1e4t5bcZWrGYTMx7sT0itz8MFCxbwzK57aO+I49M7fq9ZXlLh4MzX5zG0XSxvX9UFrTWr9xTz8q+bWb2nmIu7RJHc4i/GbxrLqA6juHfPLtj4A48n/cC0TUWEB1gZd2OPv72e97YTWQN62jXBBcDl4OOFu3h9Vgqr/2/IIU1qD+bePpvHf7+bWYFGO+8nm1zAxX1fpKjcTmJE3QzQYXe6qbA7a5oCVjtdjJm/k82ZJThKsij3ewyHfwxvnDeVVtHRx3z8O2bfze6Mv5idtoNCn8ZE2DNxhCYyvHEUscEJhPiEkF20kx82/4ULExbtRAdEoioKcPe8jcqh/2Hajum8tuIVrm0zktG9nzzmGLTWnPXtAIqri7CarDjcDvwt/lQ6KwH4dMinPLPoGWx2GwuvXoif+dCa6Tqh9YFt8KttoMyw6B30tt/4sywN/+A43ggNYIu90Bg0pecTBFoDa+LRWpNVnkXjoEN/vFids5pRs0bha/atOTcwhl2/qvVVLNi7gCCfILrEdOGKVlewMX8jt82+jTJHGWZlpmtMVyacO4HZabOZnTqb85LPY0jTfzcPY56tmkUpebSLC+HB+VehzXZ+2rUD36BGMOq3Yx8h9V/SWjP4y+50Lbfx1rDPjREZ/yW7043LrdlTWMGbs7dxYdaHhDKDexvFMO6cifSOP/Y+XlUOF0UVdmKD/UgtKCc+3B9fy7H348woy+C15a9R7ixnRfYK3ikq55xeDxuDf/iHHfPxjsTt1uSXVxPka2Hpoj8JS+5I0bTePBQRwOTzJ9MhqgNg/N/X5K7h+aXP42f2JcQnlHZR7Xi464Pw51vQ8hzcQY1xfNCLzLjB/NXzGl5a/TDvDnyXwU0H11m8h7OtcBtX/HwFZzc5mwEJA7ig+QXwxzuY0hZhvv6H/VM2uV3GaJ6++xPd/237H++tfo9SeylvDHiD0QtHgzK6WBzst0t/IzHkH6YGseWAqxpCEihc9zUXrXkVX63JtVjoG9aa/wz+gKiAaGalzmJg4kACrUcxoNVx2te0ep+icju2KidNIvxJ/e1BXkufyWI/H7466206J9fNPK0nQrWrmoXpC+kc3ZlqZzVP/PkEG/I3MCKkDc+um71/WI/AGIaHm9lrNcrd1+zLtxd8S+Ogxny48l1yy7N4ZdBbWE2H+XGpeA/Yyxnw65UUmmC2PZK4vg9C+0s8QZRBZSH8+RZrN35DjMtFjNPFd0070aJgD89ER5CJE4sy49Juz6TzkBTchId6PMID840pTmL8Y3ii9bXMKFjH73vnA5Acmszukt1c1/Y6GgU2ok9cHyZtnoRbu3mg2wM0Cmx0QKgHl+uxSrelc9fvd2IrTuX3YoVlxDhocvRTj50wxXuMqVwiW0D2etg5D9Z9C85KKMtlVlI3HnPuZUDiAEa1H0W32G64tdsrI1BX2l0oxQHJZeri70iacyuf9BzFmPy5zLl8ziFl90+Ot2xPtqKqIq74+QpyKnKID4pnRMsRvL/mfc6I6U4fUyAf5S7FqV08VmRjpAoz+hYn9Wd3yW7iO1yJT7+H+HLh//Hf3dMYHJTMuyOm1xxba83q3NW0jWhLgDWAcRvG8d7q94j2iySvqqBmu4c7380oFcHC4FCe/utlusZ0xaVdLExfyNghYzmj8f555vMq8thWtK1mjtu6tnpPEVd8spSz28Tw8chuWDzNcRcsWMBTu+6hszOBj2+fdcA+/zdtI9+u3MuYa7vxym9b2J1fTlSQL4+f25rLuydgMikun3450QHRfNzyevh8GCT0ZHX/cUxYVcir/9/encdVUfUPHP+cu7AjO7ghiriismjuC67hkhtqPi6ZtvwyHyuzLE2ttHoszcrHysxSyx6X1HLPzFxR3JfcFTUEURAElP1yz++PuSKaG4uAeN6v130xzMyde4YvM3fOzDnf07v+LTf/SpuHWQE1AKeA9kAMsAcYIKU8mmedEUB9KeVLliREvaWU/e637VJdAQWenbubmKvpbHj9wcbHzL54kIOH5/P2xQ0E6R2ZNmRn/j4wKQqux0Hlf8TxvkwHFtDk4BQGVOvK6JCP8/1+IPfg3xLwFq7h/wW/Dmyt2YYRW0czo+0MDl85zLwj89hl7Y/V8VVQtweEToG9c0kJHsTwHeM4HH8YgAlNJ9Cv1n3/Be7oy4NfMuvQLH7q8hOXUi8RfjGc5aeXY2+0J7x/OPvj9nMp9RJPVX+qQNsvtLRE2Pg+JESSfX4bszwrMsfeiKNVOVJNqcxoO4NWlVvl/j3bebcjKTOJy2mXeb7+83jaebLwxEKOJxznl+7LOX71BB62HlR2rIytzhqyrt18UnFwoZbmPuRtTlpbc+rqKVKzU/lw14d80fYLJu6YyPUsrVK6vs/6Qo1VevTKUfqv6c+EVOiXmg7PbyzSZCAP4t0tY9hwbh1/xiRgM3LfzSEBCuPqeZgRxJxaLfgi82/C/xVOOasHHObnIcrKyaL5/5rSLy2bMbFRYLTTjv2+88HOcrfz9hshBbR582ZCajrxzZLuzHRxZteAXf9IHvTt4W+ZcWBG7u8Tmk4grEYY+y7vw9nGmZqOPmCw5p3t77ApahObnt5ULNmL39vxHstOLwMg2DOYuaFz0QkdV9KvcD3rOlWdquYO63A2+SypWdoT2MHrBpMjc/Ap58Oqnqv4ZM8nnLx6kqH+Q0k3pbP89HLCL4Zja7AlYkBE/i5ypUQeWADJ0fx8bAHT7EAv9DR28OHP1PP09WrGxNDZ999OId3tYta0bTq9T8zmnJURbxt31vT785FJmASQbc7mi31fMP/YfCb5v0gb4cDelEiaHPudlg7ptPNuRzWnanT17UoNl/sMN3abqHObyE67QnX/vndewWzWzu+O5SEnGyK+Bjs34q8c5ePK1WlzNQ5/gxM6a0c2p0bxqZsLtgZbqlu58F+XJrjHn4GTa8hx8WFDcD/+0mXzw5nlOBjsuG66OdC8rUG7WV3OqhwNvRoyquGo3MpMQSspqyJXcTrpNAcu7SMy4RgzLsbQ6OllhctsXBySo+GP9yByEz8as/nEVfv+a1WpFRGxO3G3dqWBRwMmtni/ZM7dpkyY101LgujgyZtBT3LwymE29NmQ7009ahVQgKSMJDZHb6aOax0ycjIYtHZQ7jJrvTVBnkHsvbSbry4lMNPNhXqp11hUzoE2ael84dKE/qmHOGbUoZeSJU0mU7OO1vpm+allvLvzPdxs3BjfdDxvbX2L1sKeDrFneNvTjbcbDKe8wYG2mz5Dl3gW7NxhyErwqE1WRjJd1vTDoDNgb7THLM2MajiKqXumcj7lPC/Uf4GRQSMfynlv/o7zvLvyKMNaVGPiU3UBLa5jz42gYY4PM59fe8v6Jy9d48nPtUzSlV1seTnEj6cCKtxSqRy7bSy7L+1mY9+NWuK85S9Ah/eg5agiL39Ru1sFtNBZcKWUJiHEv4H1aMOwfC+lPCqEmATslVKuBL4DfhRCnAESgf6F/dySlmOW7Dt/le6BD54R01gxkCcqBtLw527sS4lEHlqCqN8HEs5o4y9t+VjL6Fq1pZZpVkot+1zsIdgwAWIPaXf7RuzWxvBMjtGGG6nd7d5DJGRe58KBeWTpBX6Vm919vfsI9tSy3x5wrUD7EbsA+G3bOBytHGlZqSWZOZmYpImz9XvidXIN/+YSE03X8G41ihfWD+XU1VP09OvJr2d+pYFHwfu+vNjgRcJqhFHevjwNPBrQqWonXm/4OqnZqeh1+tzBmEuMnSs8pTUXM17Yzcg/3qfVxd3MdTdzzMrARzveI7BCY9adW4uvlQs7LoZT3ckXe4NtbpZdgOF21XGZEUzzhkO1CqcpE06tg8tHIXCAlgE44mvt6c7p9dRqP5Fa3k3ITEnmG1t3xmwdQ2ZOJlNaTWHstrH87/j/eCX4lQLv1sozK7CSEHo1HoasKfbKJ0D32k+z/Pw6PitnzdjVr0H19lrKf7Mp/8NwXDkD4Z/Dhd0g9ER6+uGVkFEqKp8AVnor6nk0YL8pA7ov0Ia42TcPlg6F/gvh4E+wdy4MW/ePppP5knkd64x4iNxHpNFIJbvyd8xc27xSc2YcmIGN3gY/Zz8mR0zmUPwhVkWuQiKZ3GIybb3bsjFqI518OhXb0Dljm4ylp19PDsUfYtreaey/vJ/Y1FgmhE/AqDPSslJLTiedJqRyCPOPad0CDMKAu607M9vPxNnaGSHEP8bxbV6xOW2XtKWGc438P2ERAhGs9Qfs12o0zXZ/zfjjc/gz9TzOOTksu7SDNn+Ow2DjzM4rhzmTHsd7nb4GvZHy5apwKfk8X2wdz5ttP8XVIZ/jbd7Phd2s2D2dc+4uvP3E27T3af9IVT4BjDojoxuN5mD8QT6PXMpi+wocTThK76DecHo5A+sM1LJzF0CVam3vvYJOBx1vnqdpoZ1TPfbOZdrGSVAhSKuYmk00zsgAwDY7k8/O7sE9JwJsXaHpy+gjNxG6cSqhwEBXH66knuXlSpXpbufD7pwUxmYYMUozn9pYsynqTw7FH6J5xeaMDBpJSk4KPx3/iT41+9z3OMvOyebCtQusO7uaWX99mzt/4pUEGgW9UPorn6ANOxE2B9ISGbzmdTqfWMEkN1c2xWwjJDUN25RkNqRdJv3qWWb2+rX4/5+3ToPo3VC7GzmBA9l3eBrBXsH3f18Z4WzjTE+/noB24/QGP2c/elTvQe+avem7si8veYEZM4edHDEIPZvs7fjX9f0cszIyqEIrlsdspc+uCbTa/R86VOnIp1FrqZeZyUXzFUZtHoWjFIyLPoq7tQs1L8ZT49xYQGitsHp8BX9OhjkdwWzCymzi1Xqd+NR0CZ9yPkQmRTJi4wgt43PlEL7961tOXz1NkFcQQ+oOQV+EWeeHNK9KZPx1vg8/x5P+XjTxdUOXk0kOIO4wvm2t8o4sfKEpl1MyCKnl8Y+EhgA1XGqw+uxqkjOTcWrQT8vcvud7aP5KyWTMLwKFfgL6MJXmJ6BHYpLp9t/tfNE/kB6BlfL13sVH5vHBvk+ZeSmONu4BcGEXETbWfObmxkdxcVTPNmnpzS8fgfAvuG5TjoNWBn72qMip1BhWOjbC2O8H+KkvnP5dGxA44F/Q7h3tA6SE9eMg8Sx0+xx+Hc4fl3cxytOdRV0X4e/uX6B9zszJpMPPHXC3dWdBlwWkZKbQe2VvOvh0YHKLyUSlRNH1l670rdkXj4vpfHV9NZ62nrwS/Arjw8czPWQ6HX06kp2TjVFfepsLFDkp4cwfsGcO2+MPMtzZCif0dEhL5424y9hLiQAydToO1urACTtH1iQd5atzp3AvHwAXD9zcVrlK2thrZ/6AnCyoGAxh38Lv47UnoRbb/Voyz6M89cx6Xou/zOt2ks3p0Xze9nOaVWj2QH//HRd3kGHKoFXlVuiFnrb/a07D5HimN30Pggff9/0Py4cRH7Lo5CL+iIrBKyfn5oKGz0L9fv8c7gUg9jBs+lC7MAybA3ormPkEZCSDiw9bfYJ4K/kADb0aMtMylEZpMGP/DL4/8j1dqnXhjSfewPX4OlgxAjzrak9us1PBr6N2w6rNW1oK/CsntaFIDA9QATSbYU673P+x3j5VqVClJV+2//Kfq0oznZZ2okmFJkxqPonXNr3G5ujNAHjYeuDr5Iuvsy+LTy5mSbclLxQk0QAAIPJJREFU1HKtVYR/iftLy04jZEkI3Xy7cfLqSVIyU7icdvmWJuydq3bG392fS6mXGFx38B2bv+e1MnIlTlZOtPF+sFYu95KTncmuw/OoUakJz/82lLNCa+prlJJsIQgyGzigMzHDuzvhl3azOPsSg/TuvNV4LFRvi0w8R9KRxbi0GA1WlhsEZrN2HjDaaDeoovfCsRVwfCXkZHFNVw7Hft9oF8f75oFPc9Kj99DNNpUKHvX4sev/HrnKZ16nrp7ipQ0vEZ8ej6uNK4kZiRh1Rrb3317kY88+EHPOLReD5gt7+OSXvnRJTaVB+4+0YYxu3CzOMWk3FBMi4eRa0Bkw/x1+szmxcxWtW8fVc+y3tmZqJR9OyiyqOlUl6Voi8eYkulTpyAetP+ZIwhFcbVxZf3oFG//+gzndfsLRSkt+N3P7e3wTqbUQ6HntOtZScsrKyPdPTMAQ/Ewx/nGK0NXzZB79lcOnVtCodhjC2oEFR+bxMQl8XbEzzT0bofPv8WDnwMI6/LP2NCqgP/Saxcaojby26bXc6538ehSfgN5uz6U9eDt642XnlXt+ORh3kGd/e5Z2VdqRmJHIgNoDOHn1JOvPradj1Y68HPgySSnRLNkykSWJB0jUCSpmm/jGsy2norbxhoPk/YQkenX6HBwrwK8vQb0w7bzX7N/gVEkba3zHDLD3gKzr2hBBNTtDuYokYGKvVw3qnoug8t+7+bx2c5anRpKUmUwvv150r96dYwnHGFx3cJGcE9OyTIR+vg0h4LdXW3Pw94W8Ev8fGusD+PKZ/+V7e9tjtjP8j+HM6jCLFpVaaOf5Jc9An++1v0Mp9tCa4D5MpbkC+v32c0xafYwdb7ej4m3j99zP9azrDFs/lLOJJxlzJYEfPSpgRhAlM3A02tMiI5vJly6RJCS7jHDSysiPTjefysyOvUyz9h+RtG4MMe6++NuVh/Pb4Nk12tPT8BnaE1OhB6MtZF1n1hN9+fLKrjs2rcuPiNgIXtrwEo3KN+Js0lkyTBnMDZ2be7E5fe905h6dS3Xr6kRmatkxvey80As9v4X99khf7BSJuBPErByOV3YWBo/a2pPMmH1aX7XkaO3LLFNLlkHrMdpNhYwUbRw+g/Wtd7ryNr+UUruISYrSKlkbJmjjtJ3+HezcSUq/wqCaDfg7MxGDMFDNuRq1XGpR160uwV7B1HKphUFnIColioycDGz0NvT4tTsmmUM/v970rdWPvmv6MyFFR78RBx5oTMCH5dTVU4StDOO9moMI82gEMfu1wdMPLABzttZXslqIdmffsby2/Iee2oVf5nXtb+lUWauoDfsd6d2Y0GWh2Bps+W+7/96/r18xOn31NJN2TuJ44nE87TxpVakVY5wD0a99U+tLU621FmMAV1/tphOAg5e2rOMkbdzOGyJmwaW/oEKA9tQ0Ow1Wv0Z0pafwqlKFxpfX8oz/EEY1vHOznoT0BOyMdtgabNlxcQf/t+H/CPIMItAjkB+P/YgZM/1q9uOdpu885L/Mnb219S22RW8j1ZTKiw1exNvRm63RW/Gw9SAiNoIFXRYUS9/L+0nLSmXV/q+o7FCJ4CohjFjVnz2mqwD4ZGcTp9djFjpMSCqZTLyTKgnXZfOTox3z7QMIeOprOLQQ06GFxMcdpULt7hB7kIzESBY4lWOpqwfuelsCribwesIlspBc9qxN5cvH+cHJkc9cXZgXOq9MjGeZlJHEyasncTA6MO/oPHrV6EXzis1Lulg3HVsJXv73b6GRk62dwys31s5NVZoBAs5t0Vo67Z3LZvM1PnLXkio1zMhgpaMDjR2qsvv6+Vs2NbpyKM+2n4rMMdH5h2CcTdkM07vTseVEhKMn8tplRM1OD22XS0J2ZipPLmyOyZyNBOZe1+Pn2xHaT9BuNEbvhYpB+W8pcy8n18GigeDTHAYuBaMNz61/jgvXLrC291oMd3jadT9loQJ6N9HXovGy97pzH+w8srLSOHxiKf7erbF1qQoJkSRvGI9Ts1fAJx+t+P78QHs6beus5QAwZWjXxRUaaDddhZ6ZHl58Y38zTl2829GtRhj+bnXIzE6jgtMdWnolR2tjYZe79w3MnZEJ/OvbCIa2qEpQ4u+8b/6Odk6tmdr7qwffB4sMUwYdlnagcfnGTA+Zrt3s+rqFds3z8q57t4IsYaoCWsSGL9jHkYvJbBvTrkDvj0uLo/OyzmSZbzZXGFpvKNHXotnw9wYm4M6J1Bh+trfGVmdFfc9AXg1+lefWD6NXeg7jYs4yxsOddQ52zG43k2aLX9A67jd/BRb2h7rdIWQcLB1GjrU9L1X2Ifp6DOvC1hV63xccW8DHez6mvH15vm7/NX4ufrnLTGYTzRc2J92Ujk7ocpPoPFP3Gd584s1Cf/Zj4coZ+Hs7BA4q+Ell7Zuwe7Z2MTNoKfzUj+SLe9hZozUnDXpOyXROZidxOVsbV8/eYEs9N3/2Xt5PDmashB5DTjbN0jPYbmfPwIqt+D52K1/a9KT105OLcGfzT0pJp2WdMOqMPOv/LH1r9tVubGSlaRXv/T9oT4VsnCBoMER8pd0xHfab1j93/3ytElatDbSfkPvk/p0m79C/dunsHRARG8Gnez/lROIJpraeSqh3Wy4mnODgtfN0ca4Le+bAoYXaU1DX6vDXEjixRvvC9W2rDVwddxS+66Q1V86rcmM2Vx9LlaCq9FjRg49afvRA/afN0syE8AmEVg3FqDfywu8v4GTtxJpea3CyLkST4EI4mXiSfqv7YZZmfuz8I4GegbeUtySSlTyIpUd/5P29n9DYvQG7rxzGSW/L9HYz+OX4Qo5cOcz5DC1hvADapKbxWaYdxzIu8ZW7FzutBB8kZ7LfzoGlRm0shoZeDXMTeAy18SEq6yobzSkEWbmRkH2N8p4BfBf6fQnusVIgl4/CvvlExcZTvllPOkeMI06vo0WWpKt1BYzWjixJPcdpMgnNMOEojHxrp+ODqr3o0WZSSZf+oZuz7wu+ODIHW50RNzM8kxBP/wwzwpSpXagbbODFzeBZJ/8bz0rVLvptyt38fXpdcKkKz64Ga0cS0hNou6QtwwOGMzxweIH2oSxXQEuEKVO7eX/tknYTwqsuuFSDyI1wbhsyeg+zkv9in40NlUwmVjrYY0TgjYFkaWJd798wOllaOWZnwI7/wtapWqX2hU3ak9d7mLjiCD9G/M0A4xbW+q5lUPU+jG71XoF2Zfre6fxw7AfWh63Hy95L+45fNACeWQG+IQXaZnF4aH1AH0dSSnafS6RNrfxnkr3B086T7n7dWXpqKS8HvoydwY4BdQZgEAYGrR3E9xkJpFi5Q9Y10s1Z9PTrSQOPBjSt2Iw/44/wVq0J7I3+BbJTePHPfxNSrQ4z/tqMuLALKjRgdWBPLl3ezvPDw/lw5yQiTmufUxQG1hlIBYcKBHgE/COpjUFnIMAjgIjYCII8gxjdcDRT9kyhT80+RfLZjwV3P+1VGF2mQujH2hNSIWDQUpzWv0Po6d8JTUvQKmjAZb2e/TbW7LOxZm9aMp2zsmmUnsF2O1tC9M7UqdWbjdG/8n3sVnxNEukRUvj9KyQhBC0qtmDZ6WVMjpjMzos7sTHYMKnFJIxdP9USX8XshwW9YedMqN8XOn+i9c11rgIVA3O3lW3OZkv0FoBbMuWVNk0rNGVxt8X0XNGT2X/Npr1Pe748vYSVkSsJCPuNSp0/hif/c/PJdK1Q7UbGwZ9g+3SYWl1rkmTjpLWU0Bngwi5IvwpPvAA793ImSRsaorrzgz0h0AkdH7b8END6/fi7+TOo7qASq3wC1HKtxTN1n+G387/lZvG9obRWPgG61erL1ZwMBtQZwLWsa7jZuGHUG2lcsSnJmcmsilyFm60bkVfP8M1fsxknU1nnqiWk8Xb0ZhwXgGx61+hNoEcgPfx6oBM6hi8bztzr2wGo51aPAwlHABjq26WkdlUpDC9/6PIJZzdvpkrdEIZc3sn0v9cwquNMalUNAcAneicfbh/PakMi16UJW2GgXdOCj0f7KBkWPJKONXoSlxbHlN1T+IhsdPZ18DaWY5+TO533LcXv56HQdixIMySe054ud/scHC19raXUzo0Gm5vfFTnZ2s27y0e1rMgZKVqFJiNJ+661diQ7J5vwi+FIJK29W5fMH0D5pxvNsB3LQ51uN+f7dQC/DggpGX5qvZaLxacZg06soHf0L5zCBALWz2lCN2d/7cZtzF6SdTomVfOnYvIlRn9eT+vu0vkT7Trrerz2PetSNbd12luhtYk4m4DrlQTMgJVtwb8fu/p2Ze7Ruey5vIduvt2gVhcYsRs8ire7S1FRFdACSEzNwt3BmqbV3Aq1nRGBI6jiWIXBdQff0lRjROAI/u+P/wO0i4bzKedz+yB19e3K5gub+dmzMvHnUhjqP5TEjERWRK7gXNWm+F45T1yPmUza+DzppnRsDbasOruaXn69GB5QsDtytxNC0L7K3YdXCPYKJiI2gmpO1ajvUZ+fuvxUJJ+r5FPeZrLWjtDdksH0RnKr9ES80hLpnBpP55SL2heqlz9UakhYykXwrA1GOwYt+4sFqZG0r9AMWUo6uz9X/zk87DzYHbubP6K0MbVcbFx4NfhVLSlHlSZattjYg9Dy9Ts2Gd4Rs4Ox28eSmJGIm40bVRyrFPNe5I9O6BgZNJLXN7/OO9vfITwmHIDVkavp6NMRX2df4OYYo7j7QYd3tey5UTu1ZE2+ITe/rCxPAXLMOeTIHM4knUEgqOZULd9ls9JbsajboiLZz8J6veHrvBL0SoGav5UUG4MNLzR4AeAfTYSdrJ0YVFfLKplUIYkfjv/IOgdoVqEZbz7xJhUdKrItZhtOVk7/uIkS5hpGun06F65dYFbHWfRe0ZuEjIR7nr+VR8fgkP/QKe21W4b6qFO5GQv6b0RKSXx6PGZpxtG6dCRWe9h0QodPOR98yvnw81M/89KGl/gg1jLaQBIs8HLm9wsxOC3J2/dVaIkeA/prCaKidsKJ1dpNOo86WoXCsbyWk6N+XziyTFtmzgHvJuDdGJPZRJ9VfTibfBZrvTV1XAvwhFUpGUJoN2wtalRqSMjqSKJSY5E6A2PdYX1WDD3TTZwO7MqvGReJyUxAX86egRVaUX73bK3rk40THP1VG4rLvxe0eRtS47A32LD6/4I5NnsG84RAZ7j3kI334uvsi1Fn5NTVUzfL/ohWPkE1wS2U3Au9h2DxicUsO72MOU/OAcjNzGkym+i6vCsXU7VBfn9+6mecrZ3puLQjrwWO5LnaA3hv3zRWRK6grmtdDl/Rhj35ofMPBHkGPZSy3m5X7C6e//153mj0BkP8hxTLZyoPV2ZOJkadka1btpaq5kHJmcmcSz7HL2d+Yfnp5Xg7erOo26J/ZLKNSoni3R3vkpWTxbzQeeiEjk7LOmFvtCfYM5gAjwB61ehVQnuRPzeG78nLIAys6LmC7458x4G4A8zpNAdPO88H2t4rf77CzuidlLMph43BhjW91zyMYitFZOqeqfxw7Idbxmq9m82bN9OqdSvSTGk4WjmyMWojUSlRDK03tJhKqzwMqpnmg0nLTmP12dWkZacR6BnI4HWDGeP/PIMda0FaAiRfgBqdYPFgSIm++ca24yH+hFaxcPTSWtRUaQph32lZ0w1WYOWoVTocPPj9/O+M3jIagH/V/hfjmowrcJlVbEteZk4mOeYcEjMSWXxyMfOOzstd5mnnyZtPvMlbW9+ic9VQxl3LptyZjVrz3GqtwcFTa3mVl60ryZlJtPSpXOjr4r6r+uJm48asjrMKvI3ipprgPgQPM6HO07Wf5unaT/9jvkFnYFTDUYzbPg4PWw9qutREJ3TUca3DlovbCfFpzy9nfmFA7QE8V/85+q3qh7XemkCPwIdW1tsFewYT4hjCk1WfLLbPVB6u4hpSI7+crJ0I9AykgUcDWldqzegtoxm3bRyvN3w994lgtjmbVze9ysXrF0kzpTFl9xQaejUkLi2OaW2mPXL/p8/Ve4607DT+iPqDrtW6MvOg9mU3YO0AkjOTMeqMDFgzgC7VuvBaw9duaXp6Nvks17KuEeARAGh90Tdf2ExFY0WSTcladj2lVBsZNJKOPh3vW/m8Qa/T52ZEVU8+lceJndHulvHGAzwCWBT1O/17vIxBZ0AiyTBlYDdyr5agLmqn1lf0XllFqzS55dcccw7zj86nkkMllndf/nhl+C+jrPXWoNf+f0Y3Go2XnRdxaXEMrTcUB6MDRr2RvZf2svjkYpIrteTrVw/dfLOUWvNtow14N9USYG3+D5cTtXwbXnaFG1arpktNdlzcUahtlBaqAvoICq0WSkefjpi5mVSjXZV2fHnwSyaGT8TOYMeLDV7ExcaFRd0WkW3OLtbss0a9kTDXsFuaBSnKw6QTOtr7tGdUw1F8vu9ztkRv4cmqTzKl1RRm7J/BmaQzzGg7g20x21hyaglLTi3B0cqREO+Qki56vgkheCX4FUYGjQTg2XrP8v6O91l1dhVjG4/Fz9mP2YdnM/foXFKzU3nW/9nczL5jtozhbPJZmlZoioOVA7VdayORDPMYRlj7sFLdT1LR2BhsbkmupCjKg3mxwYuM2DiCp359Ciu9FdWdqnM4/jDLui/D2cFDS96YT7P/ms3hK4eZ3GJyyQz9ozx0N7pA5DW+6XjcbNz46tBXnEs+d7PrihBa5uW83KoTNzcE4IFbJt1NLZdarIxcSUJ6Am62hesGWNJUBfQRpdfp0XOzP15Pv558fehrDl85zGvBr+Fi4wIU/p9dUR4lQ/yH0NW3K7MOzWLxycXEpcVxIO4APf16EuIdQtsqbRlQewC/nPmFGi41Su2T3Qdx46aStd6a8U3HM8R/SO5wSE+Uf4J3d7zLklNL+CPqD9aHrSf6WjQnr55EL/SEXwzHLM2sP7+eYM9gPI2eRToQt6IoSmnTunJr+tTsw/pz60k1pXIu+RwAn+3/jPebv5/v7UXERvD1wa/p5tuNHtV7FHVxlVKub62+zP5rNmO3jSWsZhjbordh1Bn5d9C/b82l4FmH3dUHQuqGQl+T13HT+hdvjNp4y9P9R5GqgJYR5e3L06ZyG04knmBgnYElXRxFKTHutu68GvwqKyNXciDuAEP9hzKq4ajcCpufi1+ZGxLIzmiXW/kErXL6fvP36ejTkZc3vszLG19mz6U9ACzsuhBbgy0LTywkNjWWic0mcmTXkZIquqIoSrGZ2HQi45qMY/7R+ey5tAdfJ18WHF+Au6071Z2qU96+PDMOzMDb0ZvJLW4OObboxCKSM5MZVm8YRr0RKSXv73ifak7VmNB0ghrj/DHkbuvOhKYTmH14NpN2TsLR6IhEciX9CvM7z79l3csGrWl2YSugDb0a8kT5J5i2dxptKrfRhmN5RKkKaBkypdUUsnKysDHYlHRRFKVEOVo50r16d3Zc3MFLAS89lhcHQghaVmqJn7Mfey7toY5rHYI8g3LvoI5tMraES6goilK8hBAYhZHn6z/P8/WfJy07jT+j/mT24dnohR47gx05Mod9l/cB4OfsR1ffrkzdM5UscxbHE48TWi2Ua1nXiL4ezcRmE1XT28dY7xq96eXXixOJJ/C082T12dVM2zuNN7a8QYBHAN2rd8fJ2onknGRcbVyx0hc8Cy5o3Y3ebvw2YSvD2HFxxyOTPPFOVAW0DLEz2qkToaJYjGsyDpPZVOgT/qNMCMGnIZ9yJe0KjSs0LuniKIqilCp2Rjtmd5rN3yl/M377eNJMaSzquogx28aw4swKJJJv//qWLHMW3at3Z2XkSjZGbcx9f6tKrUqw9EppIITIvbHbvXp3pu2dxvrz61l/fj0z9s/gnabvkJSTVGRd4vyc/ShnVY5D8YdUBVRRFKW00QndY135vMHXyRdfJ9+SLoaiKEqpdGPs0NmdZpOWnYafix/zQueRlZPFobhDTIqYROPyjXm32bscjj9MZk4msamx1HCpoZItKrdwsXHh207f4mjliA4dU3ZP4YOID8jMyaS1W+si+Qyd0NHAowGH4g/df+VSTFVAFUVRFEVRlMdabdfaudM3xpJu79OeFpVaIJFY6a34qetPGISB5aeXU9GhYkkVVSnFmlZomjs9rc00+qzqQ2ZOJh62HkX2GYEegXwZ8yUpWSn/GPf8UaFy7iuKoiiKoijKHdgYbLA12AJaxdTOaMeguoNoV6VdCZdMKe087DxY3n05YS5hPOP/TJFtN8gzCInkwOUDRbbN4qYqoIqiKIqiKIqiKEXMzdaNkHIhRdoVJtAzEFuDLeEXw4tsm8VNVUAVRVEURVEURVEeAVZ6KxqXb0x4jKqAKoqiKIqiKIqiKA9Zi0otiLoWRVRKVEkXpUAKlYRICDEVeArIAiKBoVLKpDusdx64BuQAJillo8J8rqIoiqIoiqIoyuOoZaWWdK/eHbM0l3RRCqSwT0A3APWklA2AU8C9RjZvK6UMVJVPRVEURVEURVGUgvF29ObDlh9S1alqSRelQApVAZVS/i6lNFl+jQAqF75IiqIoiqIoiqIoSlkkpJRFsyEhVgGLpZQL7rDsHHAVkMA3UsrZ99jOi8CLAF5eXg0XLVpUJOVTitf169dxcHAo6WIoRUzFtWxScS2bVFzLJhXXskvFtmx6nOPatm3bfXdq/XrfCqgQ4g+g/B0WvSOlXGFZ5x2gEdBb3mGDQohKUsoYIYQnWrPdkVLKrfcrdKNGjeTevXvvt5pSCm3evJmQkJCSLoZSxFRcyyYV17JJxbVsUnEtu1Rsy6bHOa5CiDtWQO+bhEhK2eE+G34W6Aa0v1Pl07KNGMvPOCHEL0Bj4L4VUEVRFEVRFEVRFKXsKFQTXCFEKDAdaCOljL/LOvaATkp5zTK9AZgkpfztAbYfD/xd4AIqJckduFLShVCKnIpr2aTiWjapuJZNKq5ll4pt2fQ4x9VHSulx+8zCVkDPANZAgmVWhJTyJSFERWCOlLKLEMIX+MWy3AD8T0r5YYE/VHkkCCH2qozHZY+Ka9mk4lo2qbiWTSquZZeKbdmk4vpPhRoHVErpd5f5F4EulumzQEBhPkdRFEVRFEVRFEV59BV2HFBFURRFURRFURRFeSCqAqo8LHcdakd5pKm4lk0qrmWTimvZpOJadqnYlk0qrrcpsnFAFUVRFEVRFEVRFOVe1BNQRVEURVEURVEUpVioCqiiKIqiKIqiKIpSLFQFVHkgQojvhRBxQogjeeYFCCF2CiH+EkKsEkKUy7OsgWXZUctyG8v8hpbfzwghZgghREnsj6LJT1yFEAOFEAfzvMxCiEDLMhXXUiafsTUKIeZb5h8XQozN855QIcRJS2zfLol9UW7KZ1ythBBzLfMPCSFC8rxHHbOliBDCWwixSQhxzPK9+aplvqsQYoMQ4rTlp4tlvrDE7YwQ4rAQIjjPtoZY1j8thBhSUvukFCiutS3HcqYQ4o3btqXOxaVEAeI60HKc/iWE2CGECMizrcczrlJK9VKv+76A1kAwcCTPvD1AG8v0MGCyZdoAHAYCLL+7AXrL9G6gKSCAdUDnkt63x/mVn7je9r76QGSe31VcS9krn8fsAGCRZdoOOA9UBfRAJOALWAGHgLolvW+P8yufcR0BzLVMewL7AJ3ld3XMlqIXUAEItkw7AqeAusAnwNuW+W8DH1umu1jiJixx3GWZ7wqctfx0sUy7lPT+Pa6vAsTVE3gC+BB4I8921Lm4FL0KENfmN45DoHOe4/Wxjat6Aqo8ECnlViDxttk1ga2W6Q1AmGW6E3BYSnnI8t4EKWWOEKICUE5KGSG1I+8HoOdDL7xyV/mMa17/AhYBqLiWTvmMrQTshRAGwBbIAlKAxsAZKeVZKWUWWsx7POyyK3eXz7jWBf60vC8OSAIaqWO29JFSxkop91umrwHHgUpox9t8y2rzuRmnHsAPUhMBOFvi+iSwQUqZKKW8ivb/EFp8e6Lkld+4SinjpJR7gOzbNqXOxaVIAeK6w3I8AkQAlS3Tj21cVQVUKYyj3DxQ+gLelumagBRCrBdC7BdCjLHMrwRE53l/tGWeUrrcLa55PQ0stEyruD467hbbpUAqEAtEAdOklIlocbyQ5/0qtqXT3eJ6COguhDAIIaoBDS3L1DFbigkhqgJBwC7AS0oZa1l0CfCyTN/t2FTHbCn1gHG9GxXXUqoAcX0OrfUCPMZxVRVQpTCGAS8LIfahNUHIssw3AC2BgZafvYQQ7UumiEoB3C2uAAghmgBpUsojd3qzUqrdLbaNgRygIlANGC2E8C2ZIioFcLe4fo92QbMX+BzYgRZnpZQSQjgAy4DXpJQpeZdZnlarsfMeQSquZVN+4yqEaItWAX2r2ApZShlKugDKo0tKeQKtuS1CiJpAV8uiaGCrlPKKZdlatD5LC7jZ7ADLdEyxFVh5IPeI6w39ufn0E7QYqrg+Au4R2wHAb1LKbCBOCBEONEK7M5v3CbiKbSl0t7hKKU3AqBvrCSF2oPVVuoo6ZksdIYQR7WL2Jynlcsvsy0KIClLKWEsT2zjL/BjufGzGACG3zd/8MMut3Fs+43o3d4u3UkLyG1chRANgDlp/+wTL7Mc2ruoJqFJgQghPy08dMB6YZVm0HqgvhLCz9ClrAxyzNEtIEUI0tWRcfAZYUQJFV+7hHnG9Ma8flv6foPWFQMX1kXCP2EYB7SzL7NGSmpxAS25TQwhRTQhhhXbzYWVxl1u5t7vF1XIOtrdMdwRMUkp1Li6FLHH4DjgupZyeZ9FK4EYm2yHcjNNK4BlLNtymQLIlruuBTkIIF0sGzk6WeUoJKEBc70adi0uR/MZVCFEFWA4MllKeyrP+YxtXoT0hVpR7E0IsRLur6g5cBt4FHNCyLIJ2YI21NDlACDEIGIvW/GCtlHKMZX4jYB5aopN1wEip/glLTAHiGgJMkVI2vW07Kq6lTH5ia2lGNBctaY1Ay5w61bKdLmjNN/XA91LKD4txN5Tb5DOuVdEqH2a0u+rPSSn/tmxHHbOliBCiJbAN+AstXgDj0PqVLQGqAH8D/aSUiZYL4JloCYbSgKFSyr2WbQ2zvBfgQynl3GLbEeUWBYhrebQm8+Us619Hy4qaos7FpUcB4joHLTnc35Z1TVLKRpZtPZZxVRVQRVEURVEURVEUpVioJriKoiiKoiiKoihKsVAVUEVRFEVRFEVRFKVYqAqooiiKoiiKoiiKUixUBVRRFEVRFEVRFEUpFqoCqiiKoiiKoiiKohQLVQFVFEVRFEVRFEVRioWqgCqKoiiKoiiKoijF4v8B9WIeSJoQmbsAAAAASUVORK5CYII=\n", "text/plain": [ "