Prediction (out of sample)

[1]:
%matplotlib inline
[2]:
import numpy as np
import matplotlib.pyplot as plt

import statsmodels.api as sm

plt.rc("figure", figsize=(16, 8))
plt.rc("font", size=14)

Artificial data

[3]:
nsample = 50
sig = 0.25
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, np.sin(x1), (x1 - 5) ** 2))
X = sm.add_constant(X)
beta = [5.0, 0.5, 0.5, -0.02]
y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)

Estimation

[4]:
olsmod = sm.OLS(y, X)
olsres = olsmod.fit()
print(olsres.summary())
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.983
Model:                            OLS   Adj. R-squared:                  0.982
Method:                 Least Squares   F-statistic:                     893.9
Date:                Wed, 26 Nov 2025   Prob (F-statistic):           9.06e-41
Time:                        17:00:24   Log-Likelihood:               0.081726
No. Observations:                  50   AIC:                             7.837
Df Residuals:                      46   BIC:                             15.48
Df Model:                           3
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          5.0030      0.086     58.280      0.000       4.830       5.176
x1             0.5025      0.013     37.953      0.000       0.476       0.529
x2             0.5095      0.052      9.790      0.000       0.405       0.614
x3            -0.0203      0.001    -17.454      0.000      -0.023      -0.018
==============================================================================
Omnibus:                        2.872   Durbin-Watson:                   2.017
Prob(Omnibus):                  0.238   Jarque-Bera (JB):                2.615
Skew:                          -0.478   Prob(JB):                        0.271
Kurtosis:                       2.415   Cond. No.                         221.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In-sample prediction

[5]:
ypred = olsres.predict(X)
print(ypred)
[ 4.49578477  4.98255505  5.42933672  5.80836054  6.10187901  6.30508231
  6.42688847  6.48847822  6.51981501  6.55472213  6.62532562  6.75677606
  6.96311641  7.24497479  7.58946125  7.9722856   8.36174819  8.72394807
  9.02835285  9.25281504  9.38721086  9.43510354  9.41315787  9.34840223
  9.27378794  9.2227754   9.22383666  9.29577756  9.44464796  9.66274777
  9.92989207 10.21672742 10.48955453 10.71586501 10.86968235 10.93582982
 10.91242396 10.811184   10.65550648 10.4766212  10.30846031 10.18208329
 10.12057405 10.13524821 10.22379407 10.37065234 10.54957254 10.72792586
 10.87206595 10.952857  ]

Create a new sample of explanatory variables Xnew, predict and plot

[6]:
x1n = np.linspace(20.5, 25, 10)
Xnew = np.column_stack((x1n, np.sin(x1n), (x1n - 5) ** 2))
Xnew = sm.add_constant(Xnew)
ynewpred = olsres.predict(Xnew)  # predict out of sample
print(ynewpred)
[10.93744036 10.78752286 10.52308658 10.18966811  9.84720966  9.55538307
  9.35898009  9.27694578  9.29774011  9.38216336]

Plot comparison

[7]:
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(x1, y, "o", label="Data")
ax.plot(x1, y_true, "b-", label="True")
ax.plot(np.hstack((x1, x1n)), np.hstack((ypred, ynewpred)), "r", label="OLS prediction")
ax.legend(loc="best")
[7]:
<matplotlib.legend.Legend at 0x7fbdcb337a60>
../../../_images/examples_notebooks_generated_predict_12_1.png

Predicting with Formulas

Using formulas can make both estimation and prediction a lot easier

[8]:
from statsmodels.formula.api import ols

data = {"x1": x1, "y": y}

res = ols("y ~ x1 + np.sin(x1) + I((x1-5)**2)", data=data).fit()

We use the I to indicate use of the Identity transform. Ie., we do not want any expansion magic from using **2

[9]:
res.params
[9]:
Intercept           5.002995
x1                  0.502479
np.sin(x1)          0.509536
I((x1 - 5) ** 2)   -0.020288
dtype: float64

Now we only have to pass the single variable and we get the transformed right-hand side variables automatically

[10]:
res.predict(exog=dict(x1=x1n))
[10]:
0    10.937440
1    10.787523
2    10.523087
3    10.189668
4     9.847210
5     9.555383
6     9.358980
7     9.276946
8     9.297740
9     9.382163
dtype: float64