statsmodels.regression.rolling.RollingWLS.fit¶
-
RollingWLS.fit(method=
'inv', cov_type='nonrobust', cov_kwds=None, reset=None, use_t=False, params_only=False)[source]¶ Estimate model parameters.
- Parameters:¶
- method : {'inv', 'lstsq', 'pinv'}¶
Method to use when computing the the model parameters.
’inv’ - use moving windows inner-products and matrix inversion. This method is the fastest, but may be less accurate than the other methods.
’lstsq’ - Use numpy.linalg.lstsq
’pinv’ - Use numpy.linalg.pinv. This method matches the default estimator in non-moving regression estimators.
- cov_type : {'nonrobust', 'HCCM', 'HC0'}¶
Covariance estimator:
nonrobust - The classic OLS covariance estimator
HCCM, HC0 - White heteroskedasticity robust covariance
- cov_kwds : dict¶
Unused
- reset : int, optional¶
Interval to recompute the moving window inner products used to estimate the model parameters. Smaller values improve accuracy, although in practice this setting is not required to be set.
- use_t : bool, optional¶
Flag indicating to use the Student’s t distribution when computing p-values.
- params_only : bool, optional¶
Flag indicating that only parameters should be computed. Avoids calculating all other statistics or performing inference.
- Returns:¶
Estimation results where all pre-sample values are nan-filled.
- Return type:¶