Skip to content
 
statsmodels 0.14.0 (+727) statsmodels.tools.eval_measures.aic
Type to start searching
    statsmodels
    • User Guide
    • Tools
    statsmodels
    • Installing statsmodels
    • Getting started
    • User Guide
      • Background
      • Regression and Linear Models
      • Time Series Analysis
      • Other Models
      • Statistics and Tools
        • Statistics stats
        • Contingency tables
        • Multiple Imputation with Chained Equations
        • Treatment Effects treatment
        • Empirical Likelihood emplike
        • Distributions
        • Graphics
        • Input-Output iolib
        • Tools
        • Working with Large Data Sets
        • Optimization
      • Data Sets
      • Sandbox
    • Examples
    • API Reference
    • About statsmodels
    • Developer Page
    • Release Notes
    • statsmodels.tools.eval_measures.aic
      • aic
    • Show Source

    statsmodels.tools.eval_measures.aic¶

    statsmodels.tools.eval_measures.aic(llf, nobs, df_modelwc)[source]¶

    Akaike information criterion

    Parameters:
    llf{float, array_like}

    value of the loglikelihood

    nobsint

    number of observations

    df_modelwcint

    number of parameters including constant

    Returns:
    aicfloat

    information criterion

    References

    https://en.wikipedia.org/wiki/Akaike_information_criterion

    Previous statsmodels.tools.numdiff.approx_hess_cs
    Next statsmodels.tools.eval_measures.aic_sigma
    © Copyright 2009-2019, Josef Perktold, Skipper Seabold, Jonathan Taylor, statsmodels-developers.
    Last updated on Feb 08, 2023.
    Created using Sphinx 6.1.3. and Material for Sphinx