statsmodels.tsa.statespace.kalman_smoother.SmootherResults¶
- class statsmodels.tsa.statespace.kalman_smoother.SmootherResults(model)[source]¶
Results from applying the Kalman smoother and/or filter to a state space model.
- Parameters:¶
- model : Representation¶
A Statespace representation
- k_posdef¶
The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation.
- shapes¶
A dictionary recording the shapes of each of the representation matrices as tuples.
- Type:¶
dictionary of name:tuple
- missing¶
An array of the same size as endog, filled with boolean values that are True if the corresponding entry in endog is NaN and False otherwise.
- nmissing¶
An array of size nobs, where the ith entry is the number (between 0 and k_endog) of NaNs in the ith row of the endog array.
- initial_state_cov¶
The state covariance matrix used to initialize the Kalamn filter.
- Type:¶
array_like
- inversion_method¶
Bitmask representing the method used to invert the forecast error covariance matrix.
- stability_method¶
Bitmask representing the methods used to promote numerical stability in the Kalman filter recursions.
- tolerance¶
The tolerance at which the Kalman filter determines convergence to steady-state.
- loglikelihood_burn¶
The number of initial periods during which the loglikelihood is not recorded.
- collapsed_forecasts¶
If filtering using collapsed observations, stores the one-step-ahead forecasts of collapsed observations at each time period.
- Type:¶
ndarray
- collapsed_forecasts_error¶
If filtering using collapsed observations, stores the one-step-ahead forecast errors of collapsed observations at each time period.
- Type:¶
ndarray
- collapsed_forecasts_error_cov¶
If filtering using collapsed observations, stores the one-step-ahead forecast error covariance matrices of collapsed observations at each time period.
- Type:¶
ndarray
- scaled_smoothed_estimator_cov¶
The scaled smoothed estimator covariance matrices at each time period.
- Type:¶
ndarray
- smoothed_state_autocov¶
The smoothed state lago-one autocovariance matrices at each time period: \(Cov(\alpha_{t+1}, \alpha_t)\).
- Type:¶
ndarray
- smoothed_measurement_disturbance_cov¶
The smoothed measurement disturbance covariance matrices at each time period.
- Type:¶
ndarray
- smoothed_state_disturbance_cov¶
The smoothed state disturbance covariance matrices at each time period.
- Type:¶
ndarray
Methods
get_smoothed_decomposition([...])Decompose smoothed output into contributions from observations
news(previous[, t, start, end, ...])Compute the news and impacts associated with a data release
predict([start, end, dynamic])In-sample and out-of-sample prediction for state space models generally
smoothed_state_autocovariance([lag, t, ...])Compute state vector autocovariances, conditional on the full dataset
smoothed_state_gain(updates_ix[, t, start, ...])Cov(tilde alpha_{t}, I) Var(I, I)^{-1}
update_filter(kalman_filter)Update the filter results
update_representation(model[, only_options])Update the results to match a given model
update_smoother(smoother)Update the smoother results
Properties
Kalman gain matrices
Standardized forecast errors