statsmodels.tsa.vector_ar.irf.IRAnalysis.plot¶
-
IRAnalysis.plot(orth=
False, *, impulse=None, response=None, signif=0.05, plot_params=None, figsize=(10, 10), subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None, component=None)¶ Plot impulse responses
- Parameters:¶
- orth : bool, default False¶
Compute orthogonalized impulse responses
- impulse : {str, int}¶
variable providing the impulse
- response : {str, int}¶
variable affected by the impulse
- signif : float (0 < signif < 1)¶
Significance level for error bars, defaults to 95% CI
- subplot_params : dict¶
To pass to subplot plotting funcions. Example: if fonts are too big, pass {‘fontsize’ : 8} or some number to your taste.
- plot_params : dict¶
- figsize : (float, float), default (10, 10)¶
Figure size (width, height in inches)
- plot_stderr : bool, default True¶
Plot standard impulse response error bands
- stderr_type : str¶
‘asym’: default, computes asymptotic standard errors ‘mc’: monte carlo standard errors (use rpl)
- repl : int, default 1000¶
Number of replications for Monte Carlo and Sims-Zha standard errors
- seed : int¶
np.random.seed for Monte Carlo replications
- component : array or vector of principal component indices¶