statsmodels.tsa.vector_ar.svar_model.SVARProcess¶
-
class statsmodels.tsa.vector_ar.svar_model.SVARProcess(coefs, intercept, sigma_u, A_solve, B_solve, names=
None)[source]¶ Class represents a known SVAR(p) process
- Parameters:¶
- coefs : ndarray (p x k x k)¶
- intercept : ndarray (length k)¶
- sigma_u : ndarray (k x k)¶
- names : sequence (length k)¶
- A : neqs x neqs np.ndarray with unknown parameters marked with 'E'
- A_mask : neqs x neqs mask array with known parameters masked
- B : neqs x neqs np.ndarry with unknown parameters marked with 'E'
- B_mask : neqs x neqs mask array with known parameters masked
Methods
acf([nlags])Compute theoretical autocovariance function
acorr([nlags])Autocorrelation function
forecast(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y
forecast_cov(steps)Compute theoretical forecast error variance matrices
forecast_interval(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian
get_eq_index(name)Return integer position of requested equation name
Long run intercept of stable VAR process
is_stable([verbose])Determine stability based on model coefficients
Compute long-run effect of unit impulse
ma_rep([maxn])Compute MA(\(\infty\)) coefficient matrices
mean()Long run intercept of stable VAR process
mse(steps)Compute theoretical forecast error variance matrices
orth_ma_rep([maxn, P])Unavailable for SVAR
plot_acorr([nlags, linewidth])Plot theoretical autocorrelation function
plotsim([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps
simulate_var([steps, offset, seed, ...])simulate the VAR(p) process for the desired number of steps
svar_ma_rep([maxn, P])Compute Structural MA coefficient matrices using MLE of A, B
to_vecm()