statsmodels.sandbox.tsa.fftarma.ArmaFft.impulse_response¶

method

ArmaFft.impulse_response(leads=None)

Get the impulse response function (MA representation) for ARMA process

Parameters
maarray_like, 1d

moving average lag polynomial

ararray_like, 1d

auto regressive lag polynomial

leadsint

number of observations to calculate

Returns
irarray, 1d

impulse response function with nobs elements

Notes

This is the same as finding the MA representation of an ARMA(p,q). By reversing the role of ar and ma in the function arguments, the returned result is the AR representation of an ARMA(p,q), i.e

ma_representation = arma_impulse_response(ar, ma, leads=100) ar_representation = arma_impulse_response(ma, ar, leads=100)

Fully tested against matlab

Examples

AR(1)

>>> arma_impulse_response([1.0, -0.8], [1.], leads=10)
array([ 1.        ,  0.8       ,  0.64      ,  0.512     ,  0.4096    ,
0.32768   ,  0.262144  ,  0.2097152 ,  0.16777216,  0.13421773])


this is the same as

>>> 0.8**np.arange(10)
array([ 1.        ,  0.8       ,  0.64      ,  0.512     ,  0.4096    ,
0.32768   ,  0.262144  ,  0.2097152 ,  0.16777216,  0.13421773])


MA(2)

>>> arma_impulse_response([1.0], [1., 0.5, 0.2], leads=10)
array([ 1. ,  0.5,  0.2,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ,  0. ])


ARMA(1,2)

>>> arma_impulse_response([1.0, -0.8], [1., 0.5, 0.2], leads=10)
array([ 1.        ,  1.3       ,  1.24      ,  0.992     ,  0.7936    ,
0.63488   ,  0.507904  ,  0.4063232 ,  0.32505856,  0.26004685])