{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot Interaction of Categorical Factors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example, we will visualize the interaction between categorical factors. First, we will create some categorical data. Then, we will plot it using the interaction_plot function, which internally re-codes the x-factor categories to integers." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "execution": { "iopub.execute_input": "2021-02-02T06:51:14.020971Z", "iopub.status.busy": "2021-02-02T06:51:14.020219Z", "iopub.status.idle": "2021-02-02T06:51:14.618383Z", "shell.execute_reply": "2021-02-02T06:51:14.618765Z" } }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from statsmodels.graphics.factorplots import interaction_plot" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "execution": { "iopub.execute_input": "2021-02-02T06:51:14.624495Z", "iopub.status.busy": "2021-02-02T06:51:14.624019Z", "iopub.status.idle": "2021-02-02T06:51:14.627462Z", "shell.execute_reply": "2021-02-02T06:51:14.627095Z" } }, "outputs": [], "source": [ "np.random.seed(12345)\n", "weight = pd.Series(np.repeat(['low', 'hi', 'low', 'hi'], 15), name='weight')\n", "nutrition = pd.Series(np.repeat(['lo_carb', 'hi_carb'], 30), name='nutrition')\n", "days = np.log(np.random.randint(1, 30, size=60))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "execution": { "iopub.execute_input": "2021-02-02T06:51:14.642524Z", "iopub.status.busy": "2021-02-02T06:51:14.642080Z", "iopub.status.idle": "2021-02-02T06:51:14.766081Z", "shell.execute_reply": "2021-02-02T06:51:14.766444Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAFzCAYAAAAzNA41AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxbUlEQVR4nO3dd5xU1f3G8c93l94sgIqgLLaABRBXQkBZFikKSFOCRFGJEY2VWDAxiAhqEAtqLEhABWxEBSuIdDSisOCCCmr8RTREohRFFGEp5/fHmSXLumW23LlTnvfrta/dmbkz+2C5D+eWc8w5h4iIpK60sAOIiEi4VAQiIilORSAikuJUBCIiKU5FICKS4lQEIiIprkrYAcqqQYMGLiMjI+wYIiIJZcWKFZuccw2Lei3hiiAjI4OcnJywY4iIJBQz+6K413RoSEQkxakIRERSnIpARCTFJdw5AhGRXbt2sX79enbs2BF2lLhTo0YNmjRpQtWqVaN+j4pARBLO+vXrqVu3LhkZGZhZ2HHihnOOzZs3s379epo1axb1+3RoSEQSzo4dO6hfv75KoBAzo379+mUeKakIRCQhqQSKVp5/LioCEZES5ObmMmvWrGJfz8nJ4ZprrgFg0aJFvPPOO/temzBhAlOnTg08Y0XpHIGISAlyc3PJycmhR48eP3tt9+7dZGZmkpmZCfgiqFOnDu3btwfg8ssvj2nW8tKIQERSyrp162jRogWXXnopJ5xwAt26deOnn36iU6dO+2Yt2LRpExkZGeTl5TFy5EimT59O69atmT59OqNGjWLo0KF069aNCy+8kEWLFtGrVy/WrVvHhAkTGD9+PK1bt+att95i1KhR3HPPPYAvlHbt2tGyZUv69evHt99+C0CnTp246aabaNu2LccddxxvvfVWzP+ZqAhEJOX885//5Morr+Sjjz7iwAMP5MUXXyxyu2rVqjF69GgGDhxIbm4uAwcOBGDFihW8/PLLPPPMM/u2zcjI4PLLL+cPf/gDubm5nH766ft91oUXXshdd93F6tWrOemkk7jtttv2vbZ7926WLVvG/fffv9/zsaIiEJGU06xZM1q3bg3AKaecwrp168r0/t69e1OzZs2ot9+6dSvfffcdWVlZAFx00UUsWbJk3+v9+/cvd5bKoCIQkZRTvXr1fT+np6eze/duqlSpwt69ewFKvfyydu3ageTJzxJrKgIREfyhnRUrVgDwwgsv7Hu+bt26bNu2LarPKG7bAw44gIMOOmjf8f9p06btGx3EAxWBiAhwww038Oijj9K+fXs2bdq07/ns7GzWrFmz72RxSc4++2xmzpy572RxQVOmTOHGG2+kZcuW5ObmMnLkyED+HOVhzrmwM5RJZmam03oEIqlt7dq1tGjRIuwYcauofz5mtsI5l1nU9hoRiIikOBWBiEiKUxGIiKQ4FYGIpIaFCyEjw3+X/agISrBhA2RlwX//G3YSEamQhQuhVy/44gv/XWWwHxVBCcaMgbff9t9FJEHll8D27f7x9u0qg0JUBMXYsAGeeAL27vXfNSoQSUCFSyCfymA/KoJijBnjSwBgzx6NCkQSTnElkK+CZbBu3TpOPPHEnz0/cuRI5s2bV67PLO/vrCgVQRHyRwN5ef5xXp5GBSIJpbQSyBfAyGD06NF06dKl0j4v3549eyr9M/OpCIpQcDSQT6MCkTg1bBh06vS/r1atoEuX0ksg3/btfvtWrf73GcOGRfXWPXv2/Gxdg4svvni/uYoKW758Oe3bt6dVq1a0bduWbdu2sW7dOk4//XTatGlDmzZt9q1ytmjRIrKzs/nNb37DSSedBPgpqy+66CJatmzJueeey/Zo/5wlUBEUUng0kC8vDx5/XKMCkbj3ySc//5tcafbu9e8ro2jXNciXl5fHwIEDeeCBB1i1ahXz5s2jZs2aHHLIIcydO5eVK1cyffr0fUtfAixbtow77riDNWvWRP54nzB06FBWr15NvXr1eOSRR8qcuzAtVVlIUaOBfDt2wB//CE8+GdNIIlKS++/f/3G0h4UKqlULXnsNsrPL9KvLuq7BJ598QqNGjTj11FMBqFevHgA//vgjV111Fbm5uaSnp/Ppp5/ue0/btm1p1qzZvsdHHHEEHTp0AOCCCy7gwQcf5IYbbihT7sI0IiiguNFAQVOnwvvvxy6TiJRRdrbfqdeqFd325SwBKHpdg5I45zCznz0/fvx4Dj30UFatWkVOTg55BXZChdc+KPz+oj6vrFQEBZQ0GsjnnL/J7IsvYpNJRMoh2jKoQAmUR/Pmzfnqq69Yvnw5ANu2bWP37t1s3bqVRo0akZaWxrRp00o8Mfzll1+ydOlSAJ599llOO+20CudSERSwdGnJo4F8P/4IHTvCv/4VfCYRKafSyiDGJQB+DeTp06dz9dVX06pVK7p27cqOHTu44oormDJlCu3atePTTz8tcQW0Fi1aMGXKFFq2bMmWLVv4/e9/X+FcWo+gHFauhK5doWZNfzjy2GNDjSOScsq0HkFR5wxCKIFY0noEMdCmjf9vKy/PjwzWrg07kYgUq/DIIMlLoDxUBOXUsiUsWuR/zsqCDz4INY6IlCS/DJo2jVkJ9OvXj9atW+/3NWfOnMB/b3no8tEKOP54WLwYOnf2/13NnQsnnxx2KhEpUnY2lHJ5Z2WaOXNmzH5XRWlEUEHHHefLoHZtXwjLloWdSESkbFQEleDoo2HJEjjoIH+neuTucBGRhKAiqCRNm/oyOOww6NbN/ywi8UMLTRVPRVCJmjTxh4mOPBLOPBPmzw87kYjk00JTxVMRVLJGjfzVRMcc4y9dfuONsBOJSBALTdWpU6fiH1JGo0aN4p577qn0z1URBOCQQ2DBAmjeHPr0gVdfDTuRSGpLhoWmSpvHqCICu3zUzI4ApgKHAXuBic65B4rYrhNwP1AV2OScywoqUyw1aODLoHt36N8fpk/330Wkcg0bBrm5xb++c6e/mi+/CPLyYMIEP3lktWpFv6d1659Paloc5xzDhw9n9uzZmBkjRoxg4MCBxW4/btw4pk2bRlpaGmeddRZjx47lb3/7GxMnTiQvL49jjjmGadOmUatWLS6++GIOPvhg3n//fdq0aUPdunVZtWoVnTt35t///jfDhw/n0ksvjS5oCYIcEewGrnfOtQDaAVea2fEFNzCzA4FHgN7OuROAAQHmibmDDvL3FrRtC7/+NTz3XNiJRFLPF1/4ySILcq7yJo6cMWMGubm5+9YXuPHGG9mwYUOR286ePZuXXnqJ9957j1WrVjF8+HAA+vfvz/Lly1m1ahUtWrRg8uTJ+97z6aefMm/ePO69914AVq9ezeuvv87SpUsZPXo0X331VYX/DIGNCJxzG4ANkZ+3mdlaoDGwpsBmvwFmOOe+jGz3TVB5wnLAAf48Qa9ecP75/m8jF14YdiqR5FHS39w3bICjjiq6CL791v/l7LDDKvb73377bQYNGkR6ejqHHnooWVlZLF++nN69e/9s23nz5jFkyBBqRaa7OPjggwH48MMPGTFiBN999x0//PAD3bt33/eeAQMGkJ6evu9xnz59qFmzJjVr1iQ7O5tly5bRt2/fCv0ZYnKOwMwygJOB9wq9dBxwkJktMrMVZpaUu8i6dWHWLL8C3sUXQ4GyF5EAlTS1fGWdKyjLxJ3FrUdw8cUX89BDD/HBBx9w6623smPHjn2vJcV6BGZWB3gRGOac+77Qy1WAU4CeQHfgFjM7rojPGGpmOWaWs3HjxqAjB6J2bT/FSffu8LvfwaOPhp1IJLmVttBUXl7lXEHUsWNHpk+fzp49e9i4cSNLliyhbdu2RW7brVs3Hn/88X3rDG/ZsgXw6xI0atSIXbt28fTTT5f4+15++WV27NjB5s2bWbRo0b7Vzioi0CIws6r4EnjaOTejiE3WA2845350zm0ClgCtCm/knJvonMt0zmU2bNgwyMiBqlkTXnoJzj4brrgCHvjZqXMRqSzRLDRVGaOCfv360bJlS1q1akXnzp0ZN24chxVzvOnMM8+kd+/eZGZm0rp1632Xgo4ZM4Zf/vKXdO3alebNm5f4+9q2bUvPnj1p164dt9xyC4cffnjF/gAEuB6B+fHKFGCLc25YMdu0AB7CjwaqAcuA85xzHxb3ufGwHkFF5eXBb34DL74Id90FkfNFIhKlaNYjOPnkkq8myte6dfItP1vW9QiCnH20AzAY+MDMciPP3QwcCeCcm+CcW2tmbwCr8ZeYTiqpBJJFtWr+JNXgwXDTTf7ytltuCTuVSHJJtp17kIK8auhtoNSzGM65u4G7g8oRr6pUgaeegqpVYeRIP0oYPRoq4byPiITsgw8+YPDgwfs9V716dd57r/D1MvFB6xGEKD3dn6yqVg1uv92XwdixKgORaBR3BU48OOmkk8iN5rhUAMpzuF9FELL0dJg40ZfBuHH+MNH48SoDkZLUqFGDzZs3U79+/bgtgzA459i8eTM1atQo0/tUBHEgLQ0eftiXwQMP+JHBQw/550Xk55o0acL69etJ1MvJg1SjRg2aNGlSpveoCOKEmR8JVK/uRwZ5efDYY37EICL7q1q1Ks2aNQs7RtJQEcQRM3+OoHp1f21z/g0vKgMRCZKKIM6Y+auHqlXzl5Tu2gVTp/qri0REgqAiiFMjRviRwfDhfmTw7LPFT5krIlIROh0Zx2680c+sOGMGnHuuv6JIRKSyqQji3LXXwiOP+FXO+vaFn34KO5GIJBsVQQL4/e9h0iSYM8dPWPfjj2EnEpFkoiJIEJdcAlOmwMKF0KMHbNsWdiIRSRYqggQyeDA88wz84x9+XYOtW8NOJCLJQEWQYAYOhL//HZYvh65d/XJ7IiIVoSJIQP37+yuJVq2Czp1h06awE4lIIlMRJKizz4aXX4aPP/Zl8M03YScSkUSlIkhgZ57p10H+7DPo1Mmv0SoiUlYqggR3xhnwxhvw5ZeQlQXr14edSEQSjYogCXTsCG++CV9/7X9ety7sRCKSSFQESaJ9e5g3z19FlJUF//d/YScSkUShIkgip54KCxb4O4+zsuCTT8JOJCKJQEWQZE4+2d99vGuXL4M1a8JOJCLxTkWQhE46CRYt8msbdOoEq1eHnUhE4pmKIEm1aAGLF/s1DLKzYeXKsBOJSLxSESSx446DJUugbl1/memyZWEnEpF4pCJIckcd5UcGBx8MXbr4CetERApSEaSApk39yKBRIz9r6aJFYScSkXiiIkgRjRv7Amja1K9nMG9e2IlEJF6oCFJIo0b+0tJjjoFevWD27LATiUg8UBGkmEMO8WVwwgl+DeRXXgk7kYiETUWQgurXh/nzoXVrOOcceOGFsBOJSJhUBCnqwANh7lxo2xbOO88vgSkiqUlFkMLq1YM5c+C00/x6yFOmhJ1IRMKgIkhxderArFl+lbMhQ2DSpLATiUisqQiEWrXg1Vf9imeXXgoPPxx2IhGJJRWBAFCjBsycCb17w1VXwfjxYScSkVhREcg+1avD88/7K4muuw7Gjg07kYjEgopA9lOtGjz3HAwaBH/6E4weHXYiEQlalbADSPypUgWmTfOlcOutkJcHY8b49Q1EJPmoCKRI6enw+OO+DO64A3buhHHjVAYiyUhFIMVKS4MJE3wZ3HOPHxncf7/KQCTZqAikRGlp8Ne/+jIYP96XwcMP++dFJDmoCKRUZnDvvf6qorFjfRlMnOgPH4lI4lMRSFTM4M47fRncdpsvgyee8CeWRSSx6X9jiZoZjBoFVavCiBG+DJ56yj8WkcSlIpAy+/Of/cjgxhth1y5/30G1amGnEpHyCuyUn5kdYWYLzWytmX1kZtcWsU0nM9tqZrmRr5FB5ZHKdcMN8MADflqK/v1hx46wE4lIeQU5ItgNXO+cW2lmdYEVZjbXObem0HZvOed6BZhDAnLNNX5kcPnl0KcPvPQS1KwZdioRKavARgTOuQ3OuZWRn7cBa4HGQf0+Ccdll/kbz+bOhZ494ccfw04kImUVk6vBzSwDOBl4r4iXf2Vmq8xstpmdUMz7h5pZjpnlbNy4McioUg5DhsDUqbB4MZx1FmzbFnYiESmLwIvAzOoALwLDnHPfF3p5JdDUOdcK+CvwUlGf4Zyb6JzLdM5lNmzYMNC8Uj4XXOCXu3znHejWDbZuDTuRiEQr0CIws6r4EnjaOTej8OvOue+dcz9Efp4FVDWzBkFmkuAMHOinsV6xArp0gS1bwk4kItEI8qohAyYDa51z9xWzzWGR7TCztpE8m4PKJMHr1w9mzIDVq+GMM2DTprATiUhpghwRdAAGA50LXB7aw8wuN7PLI9ucC3xoZquAB4HznHMuwEwSA716+aUvP/4YOnWCr78OO5GIlMQSbb+bmZnpcnJywo4hUViwAM4+G448EubPh8MPDzuRSOoysxXOucyiXtMckhKYzp3hjTdg/XrIyoJ//zvsRCJSFBWBBOr00+HNN+Gbb3wZrFsXdiIRKUxFIIH71a/8oaHvvoOOHeGzz8JOJCIFqQgkJjIz/TmD7dv9yODjj8NOJCL5VAQSM61bw6JFsHu3v5roo49CDiQigIpAYuzEE/1UFGlpvgxWrQo7kYioCCTmmjf3ZVCjBmRn+zuRRSQ8KgIJxbHHwpIlcMAB/g7kd98NO5FI6lIRSGiaNfMjgwYNoGtXePvtsBOJpCYVgYTqyCN9GTRuDN27+5PJIhJbKgIJXePGvgAyMqBHD7/IjYjEjopA4sJhh/kyOO44Pz/RrFlhJxJJHSoCiRsNG/qbzk48Efr29Wsgi0jwVAQSVw4+GObNgzZtYMAAv9CNiASr1CIws0PNbLKZzY48Pt7MLgk+mqSqAw/0E9W1awfnneeXwBSR4EQzIngSmAPkzyb/KTAsoDwiANSrB7Nn+3mJLrgAnnwy7EQiySuaImjgnPs7sBfAObcb2BNoKhGgTh147TW//vGQITBxYtiJRJJTNEXwo5nVBxyAmbUDtgaaSiSiVi145RV/Welll8FDD4WdSCT5VIlim+uAV4CjzewfQEP8WsMiMVGjBsyYAQMHwtVXQ14eXHdd2KlEkkepReCcW2lmWcAvAAM+cc7tCjyZSAHVq/sriM4/H66/HnbuhD/9KexUIskhmquGBgA1nXMfAX2B6WbWJuhgIoVVreqvIDr/fLj5ZrjtNnAu7FQiiS+aQ0O3OOeeN7PTgO7APcCjwC8DTSZShCpVYMoUXwqjRvmRwR13gFnYyUQSVzRFkH+FUE/gUefcy2Y2KrhIIiVLT4fJk6FaNfjLX3wZ3HOPykCkvKIpgv+Y2WNAF+AuM6uO7kiWkKWlwYQJvgzuu8+fQH7wQZWBSHlEUwS/Bs4E7nHOfWdmjYAbg40lUjozv/OvXh3uvdeXwaOP+pIQkehFc9XQdjN7GTjUzI6MPP1xsLFEomMGd9/ty+DOO30ZTJrkDx+JSHRKLQIzuxq4FfiayN3F+JvLWgaYSyRqZnD77f4w0ahRvgymTPEnlkWkdNH8r3It8Avn3Oagw4iUlxnceqsvg5tvhl274Omn/dVFIlKyaIrg32hKCUkQf/qTP0x0/fW+DJ57zj8WkeJFUwT/AhaZ2evAzvwnnXP3BZZKpAKuu86PDK6+Gvr3hxdf9NNUiEjRoimCLyNf1SJfInHvqqt8GVx2GfTu7Vc7q1Ur7FQi8Smaq4ZuAzCzuv6h+yHwVCKVYOhQf47gkkugZ0949VU/tbWI7C+auYZONLP3gQ+Bj8xshZmdEHw0kYobMgSmTYMlS+DMM+H778NOJBJ/orn1ZiJwnXOuqXOuKXA98LdgY4lUnvPP9yeN33sPunWD774LO5FIfImmCGo75xbmP3DOLQJqB5ZIJAADBsALL8DKlX7Fsy1bwk4kEj+iKYJ/mdktZpYR+RoBfB50MJHK1qePP2n84YeQnQ0bN4adSCQ+RFMEv8WvSjYDmBn5eUiQoUSC0qOHX/ry00+hUyf473/DTiQSvmiuGvoWuMbMDgD2Oue2BR9LJDjdusGsWdCrly+D+fOhceOwU4mEJ5qrhk41sw+AVcAHZrbKzE4JPppIcLKzYc4c+OoryMqCL78MO5FIeKI5NDQZuMI5l+GcywCuBJ4INJVIDJx2Grz5Jmza5Mvgc535khQVTRFsc869lf/AOfc2oMNDkhTatfOHhrZuhY4d4Z//DDuRSOxFUwTLzOwxM+tkZllm9gh+7qE2WsReksEpp8DChbBjhx8ZfKzVNiTFRDPXUOvI91sLPd8evy5B58oMJBKGVq1g0SI44wxfBvPnw4knhp1KJDaiuWooOxZBRMJ2wgmweDF07uyvJpo3D1q3DjuVSPCiuWroWjOrZ94kM1tpZt1iEU4k1n7xC18GtWr5QsjJCTuRSPCiuqHMOfc90A04BH8z2djS3mRmR5jZQjNba2Yfmdm1JWx7qpntMbNzo04uEpBjjvGT1B1wgD9UtHRp2IlEghVNEVjkew/gCefcqgLPlWQ3cL1zrgXQDrjSzI7/2YebpQN3AXOiiywSvIwMXwaHHOJvQHvrrVLfIpKwoimCFWb2Jr4I5kTWJdhbyntwzm1wzq2M/LwNWAsUdf/m1cCLwDdRpxaJgSOO8IeJmjTxU1gvWBB2IpFgRFMElwB/BE51zm3Hr1JWprmGzCwDOBl4r9DzjYF+wIRS3j/UzHLMLGejZgqTGDr8cH810VFH+cVt5mjcKpVh4UI/7Fy4sNRNYyGaInDA8cA1kce1gahXgDWzOvi/8Q+LnGso6H7gJufcnhIDODfROZfpnMts2LBhtL9apFIceqj//7V5c7/s5WuvhZ1IEtrChX6iqy++8N/joAyiKYJHgF8BgyKPtwEPR/PhZlYVXwJPO+dmFLFJJvCcma0DzgUeMbO+0Xy2SCw1aODvLWjZEvr3h5kzw04kCSm/BLZv94+3b4+LMoimCH7pnLsS2AH7ZiMtdRF7MzP8PEVrnXP3FbWNc65ZgTmMXsDPafRSlNlFYurgg/29Baec4he6+fvfw04kCaVwCeSLgzKIpgh2Ra7scQBm1pAoThYDHYDBQGczy4189TCzy83s8vJHjqE4O44n4TvgAD9RXfv2MGgQPPVU2IkkIRRXAvlCLoNopph4EL8gzSFmdgf+EM6I0t4UmZwumstM87e/ONptY6Lgv7hevfyB4WzdZC1Qty7Mng1nnw0XXgh5efDb34adSkLlHOzeDbt27f99925/HfJvf+snsypJiPuaEovAzNLwy1IOB87A79j7OufWxiBbeIo7jqcykIjatf1/Dv36wSWX+P/vL7ss7FRxyLn9d4pF7SjL+1y8fMbu3bCnxOtdohfSvsaccyVvYLbUOferGOUpVWZmpssJ8r7/koZwtWqpDGQ/O3bAuefC66/Dgw/C1VdH+caCO8h42aEFscPeG81R5ABUqeK/qlbd/3tRz5X0WkWfu+UW2LKl7PmbNoV16yr1H4mZrXDOZRb1WjSHht40s3OAGa601kh00R7HUxkEZ+/e+NihRbl9jV27mJEH5x04mmuu6czO2+/mhgP+VvrnhrmDLM+OsFo1PwwKYodZ2Tvi9HSwqI9KB6tFi5L3KUWpVQueiO3aX9GMCLbh7x3Yjb9yyADnnKsXfLyfC2xEUFoJFBTGyCB/BxkPf8sL8jPC2kFWcOe0K606g1ffwPT/nM7tLafz51avx9fOsWpVSEuLnx1kKomTfUuFRgTOubqVnijelOVfFPjtunXzF5Qffnhsdqxh7iDLs9OpUSP+doTFPVcJO8iqwFO7oeoQGPHUQPL6DmTUKO13Bb9Tf+210vcxIR56jubQUPIbMqRsQzfwO+fnn4d69cq206lRI/52hMX9/rRori6WfFWqwJNP+n90o0f7q4nuvFNlIJReBiGff1QRgD8eV57jeDpXIIWkp8OkSVC9OowdCzt3wr33qgyE4ssgDvYlxf6Vz8yaxTJIqPL/BdWqFd32cfAvTuJXWho88ghccw2MH++vJArryJ7EmcL7mjjZl5Q09n8BwMzmxyhLuKItgzj5FyfxzQzuvx9uuAEeftjfY6AyEOB/+5qmTeNmX1LSoaE0M7sVOM7Mriv8YnHzByW0OD+OJ4nFDMaN84eJ7rjDn/ufPNkfPpIUl51d6fcJVERJI4Lz8JeLVgHqFvGVnIobGagEpBzM4Pbb/cnjKVNg8GB/nYFIPCl2ROCc+wS4y8xWO+dmxzBT+AqPDFQCUkG33OLvyfrjH/3I4Jln/NVFIvEgmusD3zGz+/JXCDOze83sgMCThS0Oj+NJYrvpJrjvPnjhBT8txc6dYScS8aK5fPRx4EPg15HHg4EngP5BhYobcXYcTxLfH/7gRwZXXeUnrHvxRahZM+xUkuqiKYKjnXPnFHh8m5nlBpRHJOldeaUvg8su80tfvvxy9FcuiwQhmkNDP5nZafkPzKwD8FNwkUSS36WX+vsYFyyAnj3hhx/CTiSpLJoRweXA1ALnBb4FLgoukkhquOgiPzIYPBjOPBNmzfIzlojEWjSTzq0CWplZvcjj7wNPJZIiBg3yVw8NGgRdu8Ibb8BBB4WdSlJN1LOKOee+VwmIVL5zz/VXEr3/PpxxBmzeHHYiSTWaXlIkDvTp408ar1njL1b75puwE0kqURGIxImzzvK3rHz2mS+DDRvCTiSpIqppqM2sPZBRcHvn3NSAMomkrC5dYPZsfyVRp07+qqLGjcNOJcmu1BGBmU0D7gFOA06NfBW53JmIVFxWFsyZ40cEHTvCF1+EnUiSXTQjgkzg+KRfuF4kjnToAHPnQvfuvhgWLICjjgo7lSSraM4RfAgcFnQQEdnfL3/pC2DbNl8G//xn2IkkWUVTBA2ANWY2x8xeyf8KOpiIQJs2sHChn6CuY0dYuzbsRJKMojk0NCroECJSvJYtYdEi6NzZjwzmz4eTTgo7lSSTaO4sXhyLICJSvOOPh8WLfRlkZ/vzByefHHYqSRbRXDXUzsyWm9kPZpZnZnvMTHcYi8TYL34BS5ZA7dq+EJYvDzuRJItozhE8BAwC/gnUBH4XeU5EYuzoo30ZHHSQv+fgnXfCTiTJIKo7i51znwHpzrk9zrkngE6BphKRYjVt6svg0EOhWzf/s0hFRFME282sGpBrZuPM7A9A7YBziUgJmjTx5wyOOMJPYT1/ftiJJJFFUwSDI9tdBfwIHAGcU+I7RCRwjRr5q4mOPhp69fJTWIuUR6lF4Jz7AjCgkXPuNufcdZFDRSISskMP9fcZNG/uZzB99dWwE0kiiuaqobOBXOCNyOPWuqFMJH40aODvQG7VCvr3hxkzwk4kiSaaQ0OjgLbAdwDOuVz8TKQiEicOOsjfW9C2Lfz61/Dcc2EnkkQSTRHsds5tDTyJiFTIAQf48wQdOsD558NUTRQvUYpq0jkz+w2QbmbHmtlfAV29LBKH6taFWbP8WgYXXwyTJ4edSBJBNEVwNXACsBN4FvgeGBZgJhGpgNq1/Upn3bvD734Hjz4adiKJd9HMNbQd+HPkS0QSQM2a8NJLMGAAXHEF5OXBtdeGnUriValFYGaZwM38fKnKlsHFEpGKql4dXngBBg2CYcP8VNbDh4edSuJRNNNQPw3cCHwA7A02johUpmrV/BVEF14IN93kRwYjRoSdSuJNNEWw0Tmn+wZEElTVqvDUU/77Lbf4MrjtNjALO5nEi2iK4FYzmwTMx58wBsA5p9tWRBJEejo88YQfIYwZ4w8TjR2rMhAvmiIYAjQHqvK/Q0MOKLEIzOwIYCp+veO9wETn3AOFtukDjIm8vhsY5px7uyx/ABGJTno6TJzoy2DcOF8G48erDCS6ImjlnCvPwni7geudcyvNrC6wwszmOufWFNhmPvCKc86ZWUvg7/jSEZEApKXBww/7MnjgAX+Y6KGH/POSuqIpgnfN7PhCO/BSOec2ABsiP28zs7VAY2BNgW1+KPCW2viRhogEyMyPBKpX9yODvDw/UlAZpK5oiuA04CIz+xx/jsAAV5bLR80sAzgZeK+I1/oBfwEOAXpG+5kiUn5m/hxB9er+nMGuXfD44/7wkaSeaIrgzIr8AjOrA7yIP/7/s7WOnXMzgZlm1hF/vqBLEZ8xFBgKcOSRR1YkjohEmMHo0f4wUf7VRFOn+quLJLVEc2fxF+X9cDOrii+Bp0u7ysg5t8TMjjazBs65TYVemwhMBMjMzNThI5FKNGKEL4P8+wyefdY/ltQR2FFBMzNgMrDWOXdfMdscE9kOM2sDVAM2B5VJRIo2fLg/bzBjBpx7rr+iSFJHNIeGyqsDfpnLD8wsN/LczcCRAM65CfglLy80s13AT8BA55z+xi8SgmHD/DmDK66Avn19KdSsGXYqiYXAiiByP0CJVyg75+4C7goqg4iUze9/7w8LXXopnH02vPyyn81UkpsuGBOR/VxyCUyZ4tdC7tEDtm0LO5EETUUgIj8zeDA8/TT84x9+XYOtWqMwqakIRKRI550H06fD8uXQtSt8+23YiSQoKgIRKdY55/iTxqtWwRlnwKZNpb9HEo+KQERKlH/SeO1a6NwZvvkm7ERS2VQEIlKqM8/06yB/9hl06gQbNoSdSCqTikBEonLGGTB7Nnz5JWRlwfr1YSeSyqIiEJGoZWXBm2/C119Dx46wbl3YiaQyqAhEpEzat4d58/xVRFlZ8H//F3YiqSgVgYiU2amnwoIF8OOPvgw++STsRFIRKgIRKZeTT/Z3H+fl+TJYU6alqySeqAhEpNxOOgkWLfJrG3TqBKtXh51IykNFICIVcvzxsHixn6wuOxtWrgw7kZSVikBEKuy442DJEqhb119mumxZ2ImkLFQEIlIpjjrKjwwOPhi6dPET1kliUBGISKVp2tSXQaNGftbSRYvCTiTRUBGISKVq0sQXQNOmfj2DefPCTiSlURGISKVr1MhfWnrMMdCrl5+aQuKXikBEAnHIIb4MTjjBr4H8yithJ5LiqAhEJDD168P8+dC6tV/b4IUXwk4kRVERiEigDjwQ5s6Ftm39qmfPPht2IilMRSAigatXD+bMgdNOgwsugClTwk4kBakIRCQm6tSBWbP8KmdDhsCkSWEnknwqAhGJmVq14NVX/Ypnl14KDz8cdiIBFYGIxFiNGjBzJvTuDVddBePHh51IVAQiEnPVq8Pzz/sria67Du66K+xEqU1FICKhqFYNnnsOBg2CP/4RxowJO1HqqhJ2ABFJXVWqwLRpvhRGjoSdO30hmIWdLLWoCEQkVOnp8PjjULUq3HGHL4Nx41QGsaQiEJHQpaXBY4/5kcE99/jlL++/X2UQKyoCEYkLaWnw0EP+RPL48b4MHn7YPy/BUhGISNwwg3vv9WUwdqwvg4kT/eEjCY6KQETiihnceacvg9tu82XwxBP+xLIEQ/9oRSTumMGoUf4E8ogRvgyeeso/lsqnIhCRuPXnP/uRwY03wq5d/r6DatXCTpV8dBpGROLaDTfAAw/4aSnOOQd27Ag7UfJREYhI3LvmGpgwAV57Dfr0gZ9+CjtRclERiEhCuOwymDzZL3LTsyf8+GPYiZKHikBEEsZvfwtTp8LixXDWWbBtW9iJkoOKQEQSygUXwDPPwDvvQPfusHVr2IkSn4pARBLOwIF+GuucHOjSBbZsCTtRYlMRiEhC6tcPZsyA1avhjDNg06awEyUuFYGIJKxeveCVV+Djj6FTJ/j667ATJSYVgYgktO7d4fXX4fPPfRl89VXYiRKPikBEEl7nzvDGG7B+PWRlwb//HXaixBJYEZjZEWa20MzWmtlHZnZtEducb2arI1/vmFmroPKISHI7/XR480345htfBuvWhZ0ocQQ5ItgNXO+cawG0A640s+MLbfM5kOWcawmMASYGmEdEktyvfgXz58O330LHjvDZZ2EnSgyBFYFzboNzbmXk523AWqBxoW3ecc59G3n4LtAkqDwikhoyM2HhQti+3Y8MPv447ETxLybnCMwsAzgZeK+EzS4BZhfz/qFmlmNmORs3bgwgoYgkk9atYdEi2L3bn0D+6KOQA8W5wIvAzOoALwLDnHPfF7NNNr4IbirqdefcROdcpnMus2HDhsGFFZGkceKJfiqKtDRfBqtWhZ0ofgVaBGZWFV8CTzvnZhSzTUtgEtDHObc5yDwiklqaN/dlUKMGZGfDihVhJ4pPQV41ZMBkYK1z7r5itjkSmAEMds59GlQWEUldxx4LS5ZAvXr+DuR33w07UfwJckTQARgMdDaz3MhXDzO73Mwuj2wzEqgPPBJ5PSfAPCKSopo182XQoAF06wZvvx12ovhizrmwM5RJZmamy8lRX4hI2f3nP35UsH69X+SmU6ewE8WOma1wzmUW9ZruLBaRlNG4sb+aqGlT6NHDL3IjKgIRSTGHHebL4Nhj4eyzYdassBOFT0UgIimnYUNYsABOOAH69oWXXgo7UbhUBCKSkurX99NRtGkDAwb4hW5SlYpARFLWgQf6ieratYPzzvNLYKYiFYGIpLR69WD2bD8v0QUXwJNPhp0o9lQEIpLy6tTxl5N26QJDhsDEFJsHWUUgIgLUquWXvezRAy67DB56KOxEsaMiEBGJqFEDZsyAPn3g6qvhviInx0k+KgIRkQKqV/dXEA0YANdfD3/5S9iJglcl7AAiIvGmalV/BVG1anDzzZCXByNHglnYyYKhIhARKUKVKjBlii+FUaNg5064447kLAMVgYhIMdLTYfJkPzL4y1/8yODuu5OvDFQEIiIlSEuDCRN8Gdx7ry+DBx5IrjJQEYiIlMIMHnzQn0i+915/mOjRR31JJAMVgYhIFMz8YaGCh4kmTfKHjxKdikBEJEpm/oRx9er+BHJenj+hXCXB96QJHl9EJLbM4NZb/3dp6a5d8PTT/uqiRKUiEBEphz/9yY8Mrr/el8Fzz/nHiShJTnWIiMTeddfBX//qF7bp3x927Ag7UfmoCEREKuCqq+Cxx/ySl717w/btYScqOxWBiEgFDR0Kjz8O8+ZBz57www9hJyobFYGISCUYMgSmTYMlS+Css+D778NOFD0VgYhIJTn/fH/S+N13oVs3+O67sBNFR0UgIlKJBgzw01ivXOlXPNuyJexEpVMRiIhUsr59YeZM+PBD6NwZNm4MO1HJVAQiIgHo2dMvffnJJ5CdDf/9b9iJiqciEBEJSLdu/rLSzz+HTp3gP//xz2/YAFlZ8VMOKgIRkQBlZ8OcOfDVV37n/+WXMGYMvP22/x4PVAQiIgE77TR4803YtAk6dPD3HOzdC088ER+jAhWBiEgMtGsH8+fDN9/49QwA9uyJj1GBikBEJEYOP3z/lc3y8uJjVKAiEBGJkTFjwLn9n4uHUYGKQEQkBjZs8H/7z8vb//l4GBWoCEREYmDMGH+CuChhjwpUBCIiAStuNJAv7FGBikBEJGAljQbyhTkqUBGIiARs6dLiRwP58vLgnXdik6cwrVksIhKw998PO0HJNCIQEUlxKgIRkRSnIhARSXEqAhGRFKciEBFJcSoCEZEUF1gRmNkRZrbQzNaa2Udmdm0R2zQ3s6VmttPMbggqi4iIFC/I+wh2A9c751aaWV1ghZnNdc6tKbDNFuAaoG+AOUREpASBjQiccxuccysjP28D1gKNC23zjXNuObArqBwiIlKymJwjMLMM4GTgvXK+f6iZ5ZhZzsaNGys1m4hIqgu8CMysDvAiMMw59315PsM5N9E5l+mcy2zYsGHlBhQRSXGBFoGZVcWXwNPOuRlB/i4RESmfIK8aMmAysNY5d19Qv0dERComyKuGOgCDgQ/MLDfy3M3AkQDOuQlmdhiQA9QD9prZMOD48h5CEhGRsgusCJxzbwNWyjb/BZoElUFEREqnO4tFRFKcikBEJMWpCEREUpyKQEQkxakIRERSnDnnws5QJma2Efgihr+yAbAphr9PRFJDrPctTZ1zRU7NkHBFEGtmluOcyww7h4gkl3jat+jQkIhIilMRiIikOBVB6SaGHUBEklLc7Ft0jkBEJMVpRCAikuJUBIWYWYaZfVjE86PNrEsYmUQkMZnZD2FniEaQ01AnFefcyLAziIgEQSOCoqWb2d/M7CMze9PMaprZk2Z2btjBRCTxmHe3mX1oZh+Y2cDI84+YWe/IzzPN7PHIz5eY2e2xyqciKNqxwMPOuROA74Bzwo0jIgmuP9AaaAV0Ae42s0bAEuD0yDaNgeMjP58GvBWrcCqCon3unMuN/LwCyAgviogkgdOAZ51ze5xzXwOLgVPxO/vTzex4YA3wdaQgfgW8E6twOkdQtJ0Fft4D1AwriIgkhSJXa3TO/cfMDgLOxI8ODgZ+DfzgnNsWq3AaEYiIBG8JMNDM0s2sIdARWBZ5bSkwLLLNW8ANxPCwEGhEICISCzPxh3tWAQ4YHlmzHfxOv5tz7jMz+wI/KohpEejOYhGRFKdDQyIiKU5FICKS4lQEIiIpTkUgIpLiVAQiIilORSBSQWY2KXJnaEnbFDlXVWS2298El06kdCoCkQpyzv3OObemnG/PAFQEEioVgUiEmQ03s2siP483swWRn88ws6fMrJuZLTWzlWb2vJnViby+yMwyIz9fYmafRp77m5k9VOBXdDSzd8zsXwVGB2Pxc83kmtkfYvjHFdlHRSDyPwVngswE6phZVfyEYR8AI4Auzrk2QA5wXcE3m9nhwC1AO6Ar0LzQ5zeKfFYvfAEA/BF4yznX2jk3vtL/RCJR0BQTIv+zAjjFzOriJx5ciS+E04FX8FME/8PMAKrh54gpqC2w2Dm3BcDMngeOK/D6S865vcAaMzs0yD+ISFmoCEQinHO7zGwdMAQ/BfBqIBs4GvgcmOucG1TCRxQ5w2QBBWe1LW1bkZjRoSGR/S3Bz/6YPxPk5UAu8C7QwcyOATCzWmZ2XKH3LgOyzOwgM6tCdAsabQPqVlJ2kXJREYjs7y38sfylkQVEduCP4W8ELgaeNbPV+GLY7xyAc+4/wJ3Ae8A8/EIjW0v5fauB3Wa2SieLJSyafVSkEplZHefcD5ERwUzgcefczLBziZREIwKRyjXKzHKBD/HnFV4KNY1IFDQiEBFJcRoRiIikOBWBiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIivt/At3n+Y0CqbgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(figsize=(6, 6))\n", "fig = interaction_plot(x=weight, trace=nutrition, response=days, \n", " colors=['red', 'blue'], markers=['D', '^'], ms=10, ax=ax)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }