statsmodels.base.distributed_estimation.DistributedModel¶
- class statsmodels.base.distributed_estimation.DistributedModel(partitions, model_class=None, init_kwds=None, estimation_method=None, estimation_kwds=None, join_method=None, join_kwds=None, results_class=None, results_kwds=None)[source]¶
Distributed model class
- Parameters:
- partitionsscalar
The number of partitions that the data will be split into.
- model_class
statsmodels
model
class
The model class which will be used for estimation. If None this defaults to OLS.
- init_kwdsdict-like or
None
Keywords needed for initializing the model, in addition to endog and exog.
- init_kwds_generatorgenerator or
None
Additional keyword generator that produces model init_kwds that may vary based on data partition. The current usecase is for WLS and GLS
- estimation_method
function
orNone
The method that performs the estimation for each partition. If None this defaults to _est_regularized_debiased.
- estimation_kwdsdict-like or
None
Keywords to be passed to estimation_method.
- join_method
function
orNone
The method used to recombine the results from each partition. If None this defaults to _join_debiased.
- join_kwdsdict-like or
None
Keywords to be passed to join_method.
- results_class
results
class
orNone
The class of results that should be returned. If None this defaults to RegularizedResults.
- results_kwdsdict-like or
None
Keywords to be passed to results class.
- Attributes:
- partitionsscalar
See Parameters.
- model_class
statsmodels
model
class
See Parameters.
- init_kwdsdict-like
See Parameters.
- init_kwds_generatorgenerator or
None
See Parameters.
- estimation_method
function
See Parameters.
- estimation_kwdsdict-like
See Parameters.
- join_method
function
See Parameters.
- join_kwdsdict-like
See Parameters.
- results_class
results
class
See Parameters.
- results_kwdsdict-like
See Parameters.
Methods
fit
(data_generator[, fit_kwds, ...])Performs the distributed estimation using the corresponding DistributedModel
fit_joblib
(data_generator, fit_kwds, ...[, ...])Performs the distributed estimation in parallel using joblib
fit_sequential
(data_generator, fit_kwds[, ...])Sequentially performs the distributed estimation using the corresponding DistributedModel