statsmodels.gam.generalized_additive_model.GLMGam.fit¶
- GLMGam.fit(start_params=None, maxiter=1000, method='pirls', tol=1e-08, scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, full_output=True, disp=False, max_start_irls=3, **kwargs)[source]¶
estimate parameters and create instance of GLMGamResults class
- Parameters:
- most parameters are the same as for GLM
- method
optimization
method
The special optimization method is “pirls” which uses a penalized version of IRLS. Other methods are gradient optimizers as used in base.model.LikelihoodModel.
- Returns:
- res
instance
of
wrapped
GLMGamResults
- res