statsmodels.genmod.qif.QIFResults

class statsmodels.genmod.qif.QIFResults(model, params, cov_params, scale, use_t=False, **kwds)[source]

Results class for QIF Regression

Attributes:
aic

An AIC-like statistic for models fit using QIF.

bic

A BIC-like statistic for models fit using QIF.

bse

The standard errors of the parameter estimates.

fittedvalues

Returns the fitted values from the model.

llf

Log-likelihood of model

pvalues

The two-tailed p values for the t-stats of the params.

tvalues

Return the t-statistic for a given parameter estimate.

use_t

Flag indicating to use the Student’s distribution in inference.

Methods

conf_int([alpha, cols])

Construct confidence interval for the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, ...])

Compute the variance/covariance matrix.

f_test(r_matrix[, cov_p, invcov])

Compute the F-test for a joint linear hypothesis.

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

load(fname)

Load a pickled results instance

normalized_cov_params()

See specific model class docstring

predict([exog, transform])

Call self.model.predict with self.params as the first argument.

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

summary([yname, xname, title, alpha])

Summarize the QIF regression results

t_test(r_matrix[, cov_p, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q.

t_test_pairwise(term_name[, method, alpha, ...])

Perform pairwise t_test with multiple testing corrected p-values.

wald_test(r_matrix[, cov_p, invcov, use_f, ...])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, ...])

Compute a sequence of Wald tests for terms over multiple columns.

Properties

aic

An AIC-like statistic for models fit using QIF.

bic

A BIC-like statistic for models fit using QIF.

bse

The standard errors of the parameter estimates.

fittedvalues

Returns the fitted values from the model.

llf

Log-likelihood of model

pvalues

The two-tailed p values for the t-stats of the params.

tvalues

Return the t-statistic for a given parameter estimate.

use_t

Flag indicating to use the Student's distribution in inference.