statsmodels.tsa.vector_ar.svar_model.SVARProcess¶
- class statsmodels.tsa.vector_ar.svar_model.SVARProcess(coefs, intercept, sigma_u, A_solve, B_solve, names=None)[source]¶
Class represents a known SVAR(p) process
- Parameters:
- coefs
ndarray
(p
x
k
x
k
) - intercept
ndarray
(length
k
) - sigma_u
ndarray
(k
x
k
) - namessequence (
length
k
) - A
neqs
x
neqs
np.ndarray
with
unknown
parameters
marked
with
‘E’ - A_mask
neqs
x
neqs
mask
array
with
known
parameters
masked
- B
neqs
x
neqs
np.ndarry
with
unknown
parameters
marked
with
‘E’ - B_mask
neqs
x
neqs
mask
array
with
known
parameters
masked
- coefs
Methods
acf
([nlags])Compute theoretical autocovariance function
acorr
([nlags])Autocorrelation function
forecast
(y, steps[, exog_future])Produce linear minimum MSE forecasts for desired number of steps ahead, using prior values y
forecast_cov
(steps)Compute theoretical forecast error variance matrices
forecast_interval
(y, steps[, alpha, exog_future])Construct forecast interval estimates assuming the y are Gaussian
get_eq_index
(name)Return integer position of requested equation name
Long run intercept of stable VAR process
is_stable
([verbose])Determine stability based on model coefficients
Compute long-run effect of unit impulse
ma_rep
([maxn])Compute MA(\(\infty\)) coefficient matrices
mean
()Long run intercept of stable VAR process
mse
(steps)Compute theoretical forecast error variance matrices
orth_ma_rep
([maxn, P])Unavailable for SVAR
plot_acorr
([nlags, linewidth])Plot theoretical autocorrelation function
plotsim
([steps, offset, seed])Plot a simulation from the VAR(p) process for the desired number of steps
simulate_var
([steps, offset, seed])simulate the VAR(p) process for the desired number of steps
svar_ma_rep
([maxn, P])Compute Structural MA coefficient matrices using MLE of A, B
to_vecm
()