statsmodels.base.optimizer._fit_newton¶
-
statsmodels.base.optimizer._fit_newton(f, score, start_params, fargs, kwargs, disp=
True, maxiter=100, callback=None, retall=False, full_output=True, hess=None, ridge_factor=1e-10)[source]¶ Fit using Newton-Raphson algorithm.
- Parameters:¶
- f : function¶
Returns negative log likelihood given parameters.
- score : function¶
Returns gradient of negative log likelihood with respect to params.
- start_params : array_like, optional¶
Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros.
- fargs : tuple¶
Extra arguments passed to the objective function, i.e. objective(x,*args)
- kwargs : dict[str, Any]¶
Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs)
- disp : bool¶
Set to True to print convergence messages.
- maxiter : int¶
The maximum number of iterations to perform.
- callback : callable callback(xk)¶
Called after each iteration, as callback(xk), where xk is the current parameter vector.
- retall : bool¶
Set to True to return list of solutions at each iteration. Available in Results object’s mle_retvals attribute.
- full_output : bool¶
Set to True to have all available output in the Results object’s mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information.
- hess : str, optional¶
Method for computing the Hessian matrix, if applicable.
- ridge_factor : float¶
Regularization factor for Hessian matrix.
- Returns:¶
xopt (ndarray) – The solution to the objective function
retvals (dict, None) – If full_output is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None.