statsmodels.regression.process_regression.ProcessMLE.from_formula¶
-
classmethod ProcessMLE.from_formula(formula, data, subset=
None, drop_cols=None, *args, **kwargs)[source]¶ Create a Model from a formula and dataframe.
- Parameters:¶
- formula : str or generic Formula object¶
The formula specifying the model.
- data : array_like¶
The data for the model. See Notes.
- subset : array_like¶
An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a pandas.DataFrame.
- drop_cols : array_like¶
Columns to drop from the design matrix. Cannot be used to drop terms involving categoricals.
- *args¶
Additional positional argument that are passed to the model.
- **kwargs¶
These are passed to the model with one exception. The
eval_envkeyword is passed to patsy. It can be either apatsy:patsy.EvalEnvironmentobject or an integer indicating the depth of the namespace to use. For example, the defaulteval_env=0uses the calling namespace. If you wish to use a “clean” environment seteval_env=-1.
- Returns:¶
The model instance.
- Return type:¶
model
Notes
data must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame.