Source code for statsmodels.base._prediction_inference
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 19 11:29:18 2014
Author: Josef Perktold
License: BSD-3
"""
import numpy as np
from scipy import stats
import pandas as pd
# this is similar to ContrastResults after t_test, partially copied, adjusted
class PredictionResultsBase:
"""Based class for get_prediction results
"""
def __init__(self, predicted, var_pred, func=None, deriv=None,
df=None, dist=None, row_labels=None, **kwds):
self.predicted = predicted
self.var_pred = var_pred
self.func = func
self.deriv = deriv
self.df = df
self.row_labels = row_labels
self.__dict__.update(kwds)
if dist is None or dist == 'norm':
self.dist = stats.norm
self.dist_args = ()
elif dist == 't':
self.dist = stats.t
self.dist_args = (self.df,)
else:
self.dist = dist
self.dist_args = ()
@property
def se(self):
return np.sqrt(self.var_pred)
@property
def tvalues(self):
return self.predicted / self.se
def t_test(self, value=0, alternative='two-sided'):
'''z- or t-test for hypothesis that mean is equal to value
Parameters
----------
value : array_like
value under the null hypothesis
alternative : str
'two-sided', 'larger', 'smaller'
Returns
-------
stat : ndarray
test statistic
pvalue : ndarray
p-value of the hypothesis test, the distribution is given by
the attribute of the instance, specified in `__init__`. Default
if not specified is the normal distribution.
'''
# assumes symmetric distribution
stat = (self.predicted - value) / self.se
if alternative in ['two-sided', '2-sided', '2s']:
pvalue = self.dist.sf(np.abs(stat), *self.dist_args)*2
elif alternative in ['larger', 'l']:
pvalue = self.dist.sf(stat, *self.dist_args)
elif alternative in ['smaller', 's']:
pvalue = self.dist.cdf(stat, *self.dist_args)
else:
raise ValueError('invalid alternative')
return stat, pvalue
def _conf_int_generic(self, center, se, alpha, dist_args=None):
"""internal function to avoid code duplication
"""
if dist_args is None:
dist_args = ()
q = self.dist.ppf(1 - alpha / 2., *dist_args)
lower = center - q * se
upper = center + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci
def conf_int(self, *, alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
Ignored in base class, only for compatibility, consistent signature
with subclasses
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
ci = self._conf_int_generic(self.predicted, self.se, alpha,
dist_args=self.dist_args)
return ci
def summary_frame(self, alpha=0.05):
"""Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns 'predicted', 'se', 'ci_lower', 'ci_upper'
"""
ci = self.conf_int(alpha=alpha)
to_include = {}
to_include['predicted'] = self.predicted
to_include['se'] = self.se
to_include['ci_lower'] = ci[:, 0]
to_include['ci_upper'] = ci[:, 1]
self.table = to_include
# pandas dict does not handle 2d_array
# data = np.column_stack(list(to_include.values()))
# names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res
class PredictionResultsMonotonic(PredictionResultsBase):
def __init__(self, predicted, var_pred, linpred=None, linpred_se=None,
func=None, deriv=None, df=None, dist=None, row_labels=None):
# TODO: is var_resid used? drop from arguments?
self.predicted = predicted
self.var_pred = var_pred
self.linpred = linpred
self.linpred_se = linpred_se
self.func = func
self.deriv = deriv
self.df = df
self.row_labels = row_labels
if dist is None or dist == 'norm':
self.dist = stats.norm
self.dist_args = ()
elif dist == 't':
self.dist = stats.t
self.dist_args = (self.df,)
else:
self.dist = dist
self.dist_args = ()
def _conf_int_generic(self, center, se, alpha, dist_args=None):
"""internal function to avoid code duplication
"""
if dist_args is None:
dist_args = ()
q = self.dist.ppf(1 - alpha / 2., *dist_args)
lower = center - q * se
upper = center + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
tmp = np.linspace(0, 1, 6)
# TODO: drop check?
is_linear = (self.func(tmp) == tmp).all()
if method == 'endpoint' and not is_linear:
ci_linear = self._conf_int_generic(self.linpred, self.linpred_se,
alpha,
dist_args=self.dist_args)
ci = self.func(ci_linear)
elif method == 'delta' or is_linear:
ci = self._conf_int_generic(self.predicted, self.se, alpha,
dist_args=self.dist_args)
return ci
class PredictionResultsDelta(PredictionResultsBase):
"""Prediction results based on delta method
"""
def __init__(self, results_delta, **kwds):
predicted = results_delta.predicted()
var_pred = results_delta.var()
super().__init__(predicted, var_pred, **kwds)
[docs]
class PredictionResultsMean(PredictionResultsBase):
"""Prediction results for GLM.
This results class is used for backwards compatibility for
`get_prediction` with GLM. The new PredictionResults classes dropped the
`_mean` post fix in the attribute names.
"""
def __init__(self, predicted_mean, var_pred_mean, var_resid=None,
df=None, dist=None, row_labels=None, linpred=None, link=None):
# TODO: is var_resid used? drop from arguments?
self.predicted = predicted_mean
self.var_pred = var_pred_mean
self.df = df
self.var_resid = var_resid
self.row_labels = row_labels
self.linpred = linpred
self.link = link
if dist is None or dist == 'norm':
self.dist = stats.norm
self.dist_args = ()
elif dist == 't':
self.dist = stats.t
self.dist_args = (self.df,)
else:
self.dist = dist
self.dist_args = ()
@property
def predicted_mean(self):
# alias for backwards compatibility
return self.predicted
@property
def var_pred_mean(self):
# alias for backwards compatibility
return self.var_pred
@property
def se_mean(self):
# alias for backwards compatibility
return self.se
[docs]
def conf_int(self, method='endpoint', alpha=0.05, **kwds):
"""Confidence interval for the predicted value.
This is currently only available for t and z tests.
Parameters
----------
method : {"endpoint", "delta"}
Method for confidence interval, "m
If method is "endpoint", then the confidence interval of the
linear predictor is transformed by the prediction function.
If method is "delta", then the delta-method is used. The confidence
interval in this case might reach outside the range of the
prediction, for example probabilities larger than one or smaller
than zero.
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
kwds : extra keyword arguments
currently ignored, only for compatibility, consistent signature
Returns
-------
ci : ndarray, (k_constraints, 2)
The array has the lower and the upper limit of the confidence
interval in the columns.
"""
tmp = np.linspace(0, 1, 6)
is_linear = (self.link.inverse(tmp) == tmp).all()
if method == 'endpoint' and not is_linear:
ci_linear = self.linpred.conf_int(alpha=alpha, obs=False)
ci = self.link.inverse(ci_linear)
elif method == 'delta' or is_linear:
se = self.se_mean
q = self.dist.ppf(1 - alpha / 2., *self.dist_args)
lower = self.predicted_mean - q * se
upper = self.predicted_mean + q * se
ci = np.column_stack((lower, upper))
# if we want to stack at a new last axis, for lower.ndim > 1
# np.concatenate((lower[..., None], upper[..., None]), axis=-1)
return ci
[docs]
def summary_frame(self, alpha=0.05):
"""Summary frame
Parameters
----------
alpha : float, optional
The significance level for the confidence interval.
ie., The default `alpha` = .05 returns a 95% confidence interval.
Returns
-------
pandas DataFrame with columns
'mean', 'mean_se', 'mean_ci_lower', 'mean_ci_upper'.
"""
# TODO: finish and cleanup
ci_mean = self.conf_int(alpha=alpha)
to_include = {}
to_include['mean'] = self.predicted_mean
to_include['mean_se'] = self.se_mean
to_include['mean_ci_lower'] = ci_mean[:, 0]
to_include['mean_ci_upper'] = ci_mean[:, 1]
self.table = to_include
# pandas dict does not handle 2d_array
# data = np.column_stack(list(to_include.values()))
# names = ....
res = pd.DataFrame(to_include, index=self.row_labels,
columns=to_include.keys())
return res
def _get_exog_predict(self, exog=None, transform=True, row_labels=None):
"""Prepare or transform exog for prediction
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
Returns
-------
exog : ndarray
Prediction exog
row_labels : list of str
Labels or pandas index for rows of prediction
"""
# prepare exog and row_labels, based on base Results.predict
if transform and hasattr(self.model, 'formula') and exog is not None:
from patsy import dmatrix
if isinstance(exog, pd.Series):
exog = pd.DataFrame(exog)
exog = dmatrix(self.model.data.design_info, exog)
if exog is not None:
if row_labels is None:
row_labels = getattr(exog, 'index', None)
if callable(row_labels):
row_labels = None
exog = np.asarray(exog)
if exog.ndim == 1 and (self.model.exog.ndim == 1 or
self.model.exog.shape[1] == 1):
exog = exog[:, None]
exog = np.atleast_2d(exog) # needed in count model shape[1]
else:
exog = self.model.exog
if row_labels is None:
row_labels = getattr(self.model.data, 'row_labels', None)
return exog, row_labels
def get_prediction_glm(self, exog=None, transform=True,
row_labels=None, linpred=None, link=None,
pred_kwds=None):
"""
Compute prediction results for GLM compatible models.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
linpred : linear prediction instance
Instance of linear prediction results used for confidence intervals
based on endpoint transformation.
link : instance of link function
If no link function is provided, then the `model.family.link` is used.
pred_kwds : dict
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models. See the predict method of the
model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
predicted_mean = self.model.predict(self.params, exog, **pred_kwds)
covb = self.cov_params()
link_deriv = self.model.family.link.inverse_deriv(linpred.predicted_mean)
var_pred_mean = link_deriv**2 * (exog * np.dot(covb, exog.T).T).sum(1)
var_resid = self.scale # self.mse_resid / weights
# TODO: check that we have correct scale, Refactor scale #???
# special case for now:
if self.cov_type == 'fixed scale':
var_resid = self.cov_kwds['scale']
dist = ['norm', 't'][self.use_t]
return PredictionResultsMean(
predicted_mean, var_pred_mean, var_resid,
df=self.df_resid, dist=dist,
row_labels=row_labels, linpred=linpred, link=link)
def get_prediction_linear(self, exog=None, transform=True,
row_labels=None, pred_kwds=None, index=None):
"""
Compute prediction results for linear prediction.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
k1 = exog.shape[1]
if len(self.params > k1):
# TODO: we allow endpoint transformation only for the first link
index = np.arange(k1)
else:
index = None
# get linear prediction and standard errors
covb = self.cov_params(column=index)
var_pred = (exog * np.dot(covb, exog.T).T).sum(1)
pred_kwds_linear = pred_kwds.copy()
pred_kwds_linear["which"] = "linear"
predicted = self.model.predict(self.params, exog, **pred_kwds_linear)
dist = ['norm', 't'][self.use_t]
res = PredictionResultsBase(predicted, var_pred,
df=self.df_resid, dist=dist,
row_labels=row_labels
)
return res
def get_prediction_monotonic(self, exog=None, transform=True,
row_labels=None, link=None,
pred_kwds=None, index=None):
"""
Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
link : instance of link function
If no link function is provided, then the ``mmodel.family.link` is
used.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
index : slice or array-index
Is used to select rows and columns of cov_params, if the prediction
function only depends on a subset of parameters.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if pred_kwds is None:
pred_kwds = {}
if link is None:
link = self.model.family.link
func_deriv = link.inverse_deriv
# get linear prediction and standard errors
covb = self.cov_params(column=index)
linpred_var = (exog * np.dot(covb, exog.T).T).sum(1)
pred_kwds_linear = pred_kwds.copy()
pred_kwds_linear["which"] = "linear"
linpred = self.model.predict(self.params, exog, **pred_kwds_linear)
predicted = self.model.predict(self.params, exog, **pred_kwds)
link_deriv = func_deriv(linpred)
var_pred = link_deriv**2 * linpred_var
dist = ['norm', 't'][self.use_t]
res = PredictionResultsMonotonic(predicted, var_pred,
df=self.df_resid, dist=dist,
row_labels=row_labels, linpred=linpred,
linpred_se=np.sqrt(linpred_var),
func=link.inverse, deriv=func_deriv)
return res
def get_prediction_delta(
self,
exog=None,
which="mean",
average=False,
agg_weights=None,
transform=True,
row_labels=None,
pred_kwds=None
):
"""
compute prediction results
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
which : str
The statistic that is prediction. Which statistics are available
depends on the model.predict method.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then them mean over
observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
pred_kwargs :
Some models can take additional keyword arguments, such as offset or
additional exog in multi-part models.
See the predict method of the model for the details.
Returns
-------
prediction_results : generalized_linear_model.PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and summary
tables for the prediction of the mean and of new observations.
"""
# prepare exog and row_labels, based on base Results.predict
exog, row_labels = _get_exog_predict(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
)
if agg_weights is None:
agg_weights = np.array(1.)
def f_pred(p):
"""Prediction function as function of params
"""
pred = self.model.predict(p, exog, which=which, **pred_kwds)
if average:
# using `.T` which should work if aggweights is 1-dim
pred = (pred.T * agg_weights.T).mean(-1).T
return pred
nlpm = self._get_wald_nonlinear(f_pred)
# TODO: currently returns NonlinearDeltaCov
res = PredictionResultsDelta(nlpm)
return res
def get_prediction(self, exog=None, transform=True, which="mean",
row_labels=None, average=False, agg_weights=None,
pred_kwds=None):
"""
Compute prediction results when endpoint transformation is valid.
Parameters
----------
exog : array_like, optional
The values for which you want to predict.
transform : bool, optional
If the model was fit via a formula, do you want to pass
exog through the formula. Default is True. E.g., if you fit
a model y ~ log(x1) + log(x2), and transform is True, then
you can pass a data structure that contains x1 and x2 in
their original form. Otherwise, you'd need to log the data
first.
which : str
Which statistic is to be predicted. Default is "mean".
The available statistics and options depend on the model.
see the model.predict docstring
linear : bool
Linear has been replaced by the `which` keyword and will be
deprecated.
If linear is True, then `which` is ignored and the linear
prediction is returned.
row_labels : list of str or None
If row_lables are provided, then they will replace the generated
labels.
average : bool
If average is True, then the mean prediction is computed, that is,
predictions are computed for individual exog and then the average
over observation is used.
If average is False, then the results are the predictions for all
observations, i.e. same length as ``exog``.
agg_weights : ndarray, optional
Aggregation weights, only used if average is True.
The weights are not normalized.
**kwargs :
Some models can take additional keyword arguments, such as offset,
exposure or additional exog in multi-part models like zero inflated
models.
See the predict method of the model for the details.
Returns
-------
prediction_results : PredictionResults
The prediction results instance contains prediction and prediction
variance and can on demand calculate confidence intervals and
summary dataframe for the prediction.
Notes
-----
Status: new in 0.14, experimental
"""
use_endpoint = getattr(self.model, "_use_endpoint", True)
if which == "linear":
res = get_prediction_linear(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
pred_kwds=pred_kwds,
)
elif (which == "mean")and (use_endpoint is True) and (average is False):
# endpoint transformation
k1 = self.model.exog.shape[1]
if len(self.params > k1):
# TODO: we allow endpoint transformation only for the first link
index = np.arange(k1)
else:
index = None
pred_kwds["which"] = which
# TODO: add link or ilink to all link based models (except zi
link = getattr(self.model, "link", None)
if link is None:
# GLM
if hasattr(self.model, "family"):
link = getattr(self.model.family, "link", None)
if link is None:
# defaulting to log link for count models
import warnings
warnings.warn("using default log-link in get_prediction")
from statsmodels.genmod.families import links
link = links.Log()
res = get_prediction_monotonic(
self,
exog=exog,
transform=transform,
row_labels=row_labels,
link=link,
pred_kwds=pred_kwds,
index=index,
)
else:
# which is not mean or linear, or we need averaging
res = get_prediction_delta(
self,
exog=exog,
which=which,
average=average,
agg_weights=agg_weights,
pred_kwds=pred_kwds,
)
return res
def params_transform_univariate(params, cov_params, link=None, transform=None,
row_labels=None):
"""
results for univariate, nonlinear, monotonicaly transformed parameters
This provides transformed values, standard errors and confidence interval
for transformations of parameters, for example in calculating rates with
`exp(params)` in the case of Poisson or other models with exponential
mean function.
"""
from statsmodels.genmod.families import links
if link is None and transform is None:
link = links.Log()
if row_labels is None and hasattr(params, 'index'):
row_labels = params.index
params = np.asarray(params)
predicted_mean = link.inverse(params)
link_deriv = link.inverse_deriv(params)
var_pred_mean = link_deriv**2 * np.diag(cov_params)
# TODO: do we want covariance also, or just var/se
dist = stats.norm
# TODO: need ci for linear prediction, method of `lin_pred
linpred = PredictionResultsMean(
params, np.diag(cov_params), dist=dist,
row_labels=row_labels, link=links.Identity())
res = PredictionResultsMean(
predicted_mean, var_pred_mean, dist=dist,
row_labels=row_labels, linpred=linpred, link=link)
return res
Last update:
Dec 14, 2023