Source code for statsmodels.sandbox.sysreg

from statsmodels.regression.linear_model import GLS
import numpy as np
from statsmodels.base.model import LikelihoodModelResults
from scipy import sparse

# http://www.irisa.fr/aladin/wg-statlin/WORKSHOPS/RENNES02/SLIDES/Foschi.pdf

__all__ = ['SUR', 'Sem2SLS']


#probably should have a SystemModel superclass
# TODO: does it make sense of SUR equations to have
# independent endogenous regressors?  If so, then
# change docs to LHS = RHS
#TODO: make a dictionary that holds equation specific information
#rather than these cryptic lists?  Slower to get a dict value?
#TODO: refine sigma definition
[docs]class SUR: """ Seemingly Unrelated Regression Parameters ---------- sys : list [endog1, exog1, endog2, exog2,...] It will be of length 2 x M, where M is the number of equations endog = exog. sigma : array_like M x M array where sigma[i,j] is the covariance between equation i and j dfk : None, 'dfk1', or 'dfk2' Default is None. Correction for the degrees of freedom should be specified for small samples. See the notes for more information. Attributes ---------- cholsigmainv : ndarray The transpose of the Cholesky decomposition of `pinv_wexog` df_model : ndarray Model degrees of freedom of each equation. p_{m} - 1 where p is the number of regressors for each equation m and one is subtracted for the constant. df_resid : ndarray Residual degrees of freedom of each equation. Number of observations less the number of parameters. endog : ndarray The LHS variables for each equation in the system. It is a M x nobs array where M is the number of equations. exog : ndarray The RHS variable for each equation in the system. It is a nobs x sum(p_{m}) array. Which is just each RHS array stacked next to each other in columns. history : dict Contains the history of fitting the model. Probably not of interest if the model is fit with `igls` = False. iterations : int The number of iterations until convergence if the model is fit iteratively. nobs : float The number of observations of the equations. normalized_cov_params : ndarray sum(p_{m}) x sum(p_{m}) array :math:`\\left[X^{T}\\left(\\Sigma^{-1}\\otimes\\boldsymbol{I}\\right)X\\right]^{-1}` pinv_wexog : ndarray The pseudo-inverse of the `wexog` sigma : ndarray M x M covariance matrix of the cross-equation disturbances. See notes. sp_exog : CSR sparse matrix Contains a block diagonal sparse matrix of the design so that exog1 ... exogM are on the diagonal. wendog : ndarray M * nobs x 1 array of the endogenous variables whitened by `cholsigmainv` and stacked into a single column. wexog : ndarray M*nobs x sum(p_{m}) array of the whitened exogenous variables. Notes ----- All individual equations are assumed to be well-behaved, homoskedastic iid errors. This is basically an extension of GLS, using sparse matrices. .. math:: \\Sigma=\\left[\\begin{array}{cccc} \\sigma_{11} & \\sigma_{12} & \\cdots & \\sigma_{1M}\\\\ \\sigma_{21} & \\sigma_{22} & \\cdots & \\sigma_{2M}\\\\ \\vdots & \\vdots & \\ddots & \\vdots\\\\ \\sigma_{M1} & \\sigma_{M2} & \\cdots & \\sigma_{MM}\\end{array}\\right] References ---------- Zellner (1962), Greene (2003) """ #TODO: Does each equation need nobs to be the same? def __init__(self, sys, sigma=None, dfk=None): if len(sys) % 2 != 0: raise ValueError("sys must be a list of pairs of endogenous and \ exogenous variables. Got length %s" % len(sys)) if dfk: if not dfk.lower() in ['dfk1','dfk2']: raise ValueError("dfk option %s not understood" % (dfk)) self._dfk = dfk M = len(sys[1::2]) self._M = M # exog = np.zeros((M,M), dtype=object) # for i,eq in enumerate(sys[1::2]): # exog[i,i] = np.asarray(eq) # not sure this exog is needed # used to compute resids for now exog = np.column_stack(np.asarray(sys[1::2][i]) for i in range(M)) # exog = np.vstack(np.asarray(sys[1::2][i]) for i in range(M)) self.exog = exog # 2d ndarray exog is better # Endog, might just go ahead and reshape this? endog = np.asarray(sys[::2]) self.endog = endog self.nobs = float(self.endog[0].shape[0]) # assumes all the same length # Degrees of Freedom df_resid = [] df_model = [] [df_resid.append(self.nobs - np.linalg.matrix_rank(_)) for _ in sys[1::2]] [df_model.append(np.linalg.matrix_rank(_) - 1) for _ in sys[1::2]] self.df_resid = np.asarray(df_resid) self.df_model = np.asarray(df_model) # "Block-diagonal" sparse matrix of exog sp_exog = sparse.lil_matrix((int(self.nobs*M), int(np.sum(self.df_model+1)))) # linked lists to build self._cols = np.cumsum(np.hstack((0, self.df_model+1))) for i in range(M): sp_exog[i*self.nobs:(i+1)*self.nobs, self._cols[i]:self._cols[i+1]] = sys[1::2][i] self.sp_exog = sp_exog.tocsr() # cast to compressed for efficiency # Deal with sigma, check shape earlier if given if np.any(sigma): sigma = np.asarray(sigma) # check shape elif sigma is None: resids = [] for i in range(M): resids.append(GLS(endog[i],exog[:, self._cols[i]:self._cols[i+1]]).fit().resid) resids = np.asarray(resids).reshape(M,-1) sigma = self._compute_sigma(resids) self.sigma = sigma self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(\ self.sigma)).T self.initialize()
[docs] def initialize(self): self.wendog = self.whiten(self.endog) self.wexog = self.whiten(self.sp_exog) self.pinv_wexog = np.linalg.pinv(self.wexog) self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog)) self.history = {'params' : [np.inf]} self.iterations = 0
def _update_history(self, params): self.history['params'].append(params) def _compute_sigma(self, resids): """ Computes the sigma matrix and update the cholesky decomposition. """ M = self._M nobs = self.nobs sig = np.dot(resids, resids.T) # faster way to do this? if not self._dfk: div = nobs elif self._dfk.lower() == 'dfk1': div = np.zeros(M**2) for i in range(M): for j in range(M): div[i+j] = ((self.df_model[i]+1) *\ (self.df_model[j]+1))**(1/2) div.reshape(M,M) else: # 'dfk2' error checking is done earlier div = np.zeros(M**2) for i in range(M): for j in range(M): div[i+j] = nobs - np.max(self.df_model[i]+1, self.df_model[j]+1) div.reshape(M,M) # does not handle (#,) self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(sig/div)).T return sig/div
[docs] def whiten(self, X): """ SUR whiten method. Parameters ---------- X : list of arrays Data to be whitened. Returns ------- If X is the exogenous RHS of the system. ``np.dot(np.kron(cholsigmainv,np.eye(M)),np.diag(X))`` If X is the endogenous LHS of the system. """ nobs = self.nobs if X is self.endog: # definitely not a robust check return np.dot(np.kron(self.cholsigmainv,np.eye(nobs)), X.reshape(-1,1)) elif X is self.sp_exog: return (sparse.kron(self.cholsigmainv, sparse.eye(nobs,nobs))*X).toarray()#*=dot until cast to array
[docs] def fit(self, igls=False, tol=1e-5, maxiter=100): """ igls : bool Iterate until estimates converge if sigma is None instead of two-step GLS, which is the default is sigma is None. tol : float maxiter : int Notes ----- This ia naive implementation that does not exploit the block diagonal structure. It should work for ill-conditioned `sigma` but this is untested. """ if not np.any(self.sigma): self.sigma = self._compute_sigma(self.endog, self.exog) M = self._M beta = np.dot(self.pinv_wexog, self.wendog) self._update_history(beta) self.iterations += 1 if not igls: sur_fit = SysResults(self, beta, self.normalized_cov_params) return sur_fit conv = self.history['params'] while igls and (np.any(np.abs(conv[-2] - conv[-1]) > tol)) and \ (self.iterations < maxiter): fittedvalues = (self.sp_exog*beta).reshape(M,-1) resids = self.endog - fittedvalues # do not attach results yet self.sigma = self._compute_sigma(resids) # need to attach for compute? self.wendog = self.whiten(self.endog) self.wexog = self.whiten(self.sp_exog) self.pinv_wexog = np.linalg.pinv(self.wexog) self.normalized_cov_params = np.dot(self.pinv_wexog, np.transpose(self.pinv_wexog)) beta = np.dot(self.pinv_wexog, self.wendog) self._update_history(beta) self.iterations += 1 sur_fit = SysResults(self, beta, self.normalized_cov_params) return sur_fit
[docs] def predict(self, design): pass
#TODO: Should just have a general 2SLS estimator to subclass # for IV, FGLS, etc. # Also should probably have SEM class and estimators as subclasses
[docs]class Sem2SLS: """ Two-Stage Least Squares for Simultaneous equations Parameters ---------- sys : list [endog1, exog1, endog2, exog2,...] It will be of length 2 x M, where M is the number of equations endog = exog. indep_endog : dict A dictionary mapping the equation to the column numbers of the the independent endogenous regressors in each equation. It is assumed that the system is entered as broken up into LHS and RHS. For now, the values of the dict have to be sequences. Note that the keys for the equations should be zero-indexed. instruments : ndarray Array of the exogenous independent variables. Notes ----- This is unfinished, and the design should be refactored. Estimation is done by brute force and there is no exploitation of the structure of the system. """ def __init__(self, sys, indep_endog=None, instruments=None): if len(sys) % 2 != 0: raise ValueError("sys must be a list of pairs of endogenous and \ exogenous variables. Got length %s" % len(sys)) M = len(sys[1::2]) self._M = M # The lists are probably a bad idea self.endog = sys[::2] # these are just list containers self.exog = sys[1::2] self._K = [np.linalg.matrix_rank(_) for _ in sys[1::2]] # fullexog = np.column_stack((_ for _ in self.exog)) self.instruments = instruments # Keep the Y_j's in a container to get IVs instr_endog = {} [instr_endog.setdefault(_,[]) for _ in indep_endog.keys()] for eq_key in indep_endog: for varcol in indep_endog[eq_key]: instr_endog[eq_key].append(self.exog[eq_key][:,varcol]) # ^ copy needed? # self._instr_endog = instr_endog self._indep_endog = indep_endog _col_map = np.cumsum(np.hstack((0,self._K))) # starting col no.s # move this check to whiten since we're not going to build a full exog? for eq_key in indep_endog: try: iter(indep_endog[eq_key]) except: # eq_key = [eq_key] raise TypeError("The values of the indep_exog dict must be " "iterable. Got type %s for converter %s" % (type(indep_endog[eq_key]), eq_key)) # for del_col in indep_endog[eq_key]: # fullexog = np.delete(fullexog, _col_map[eq_key]+del_col, 1) # _col_map[eq_key+1:] -= 1 # Josef's example for deleting reoccuring "rows" # fullexog = np.unique(fullexog.T.view([('',fullexog.dtype)]*\ # fullexog.shape[0])).view(fullexog.dtype).reshape(\ # fullexog.shape[0],-1) # From http://article.gmane.org/gmane.comp.python.numeric.general/32276/ # Or Jouni' suggetsion of taking a hash: # http://www.mail-archive.com/numpy-discussion@scipy.org/msg04209.html # not clear to me how this would work though, only if they are the *same* # elements? # self.fullexog = fullexog self.wexog = self.whiten(instr_endog)
[docs] def whiten(self, Y): """ Runs the first stage of the 2SLS. Returns the RHS variables that include the instruments. """ wexog = [] indep_endog = self._indep_endog # this has the col mapping # fullexog = self.fullexog instruments = self.instruments for eq in range(self._M): # need to go through all equations regardless instr_eq = Y.get(eq, None) # Y has the eq to ind endog array map newRHS = self.exog[eq].copy() if instr_eq: for i,LHS in enumerate(instr_eq): yhat = GLS(LHS, self.instruments).fit().fittedvalues newRHS[:,indep_endog[eq][i]] = yhat # this might fail if there is a one variable column (nobs,) # in exog wexog.append(newRHS) return wexog
[docs] def fit(self): """ """ delta = [] wexog = self.wexog endog = self.endog for j in range(self._M): delta.append(GLS(endog[j], wexog[j]).fit().params) return delta
class SysResults(LikelihoodModelResults): """ Not implemented yet. """ def __init__(self, model, params, normalized_cov_params=None, scale=1.): super(SysResults, self).__init__(model, params, normalized_cov_params, scale) self._get_results() def _get_results(self): pass

Last update: May 05, 2023