Source code for statsmodels.stats.contingency_tables

"""
Methods for analyzing two-way contingency tables (i.e. frequency
tables for observations that are cross-classified with respect to two
categorical variables).

The main classes are:

  * Table : implements methods that can be applied to any two-way
  contingency table.

  * SquareTable : implements methods that can be applied to a square
  two-way contingency table.

  * Table2x2 : implements methods that can be applied to a 2x2
  contingency table.

  * StratifiedTable : implements methods that can be applied to a
  collection of 2x2 contingency tables.

Also contains functions for conducting McNemar's test and Cochran's q
test.

Note that the inference procedures may depend on how the data were
sampled.  In general the observed units are independent and
identically distributed.
"""

import warnings

import numpy as np
import pandas as pd
from scipy import stats

from statsmodels import iolib
from statsmodels.tools import sm_exceptions
from statsmodels.tools.decorators import cache_readonly


def _make_df_square(table):
    """
    Reindex a pandas DataFrame so that it becomes square, meaning that
    the row and column indices contain the same values, in the same
    order.  The row and column index are extended to achieve this.
    """

    if not isinstance(table, pd.DataFrame):
        return table

    # If the table is not square, make it square
    if not table.index.equals(table.columns):
        ix = list(set(table.index) | set(table.columns))
        ix.sort()
        table = table.reindex(index=ix, columns=ix, fill_value=0)

    # Ensures that the rows and columns are in the same order.
    table = table.reindex(table.columns)

    return table


class _Bunch:

    def __repr__(self):
        return "<bunch containing results, print to see contents>"

    def __str__(self):
        ky = [k for k, _ in self.__dict__.items()]
        ky.sort()
        m = max([len(k) for k in ky])
        tab = []
        f = "{:" + str(m) + "}   {}"
        for k in ky:
            tab.append(f.format(k, self.__dict__[k]))
        return "\n".join(tab)


[docs] class Table: """ A two-way contingency table. Parameters ---------- table : array_like A contingency table. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Attributes ---------- table_orig : array_like The original table is cached as `table_orig`. See Also -------- statsmodels.graphics.mosaicplot.mosaic scipy.stats.chi2_contingency Notes ----- The inference procedures used here are all based on a sampling model in which the units are independent and identically distributed, with each unit being classified with respect to two categorical variables. References ---------- Definitions of residuals: https://onlinecourses.science.psu.edu/stat504/node/86 """ def __init__(self, table, shift_zeros=True): self.table_orig = table self.table = np.asarray(table, dtype=np.float64) if shift_zeros and (self.table.min() == 0): self.table[self.table == 0] = 0.5 def __str__(self): s = ("A %dx%d contingency table with counts:\n" % tuple(self.table.shape)) s += np.array_str(self.table) return s
[docs] @classmethod def from_data(cls, data, shift_zeros=True): """ Construct a Table object from data. Parameters ---------- data : array_like The raw data, from which a contingency table is constructed using the first two columns. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Returns ------- A Table instance. """ if isinstance(data, pd.DataFrame): table = pd.crosstab(data.iloc[:, 0], data.iloc[:, 1]) else: table = pd.crosstab(data[:, 0], data[:, 1]) return cls(table, shift_zeros)
[docs] def test_nominal_association(self): """ Assess independence for nominal factors. Assessment of independence between rows and columns using chi^2 testing. The rows and columns are treated as nominal (unordered) categorical variables. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. df : int The degrees of freedom of the reference distribution pvalue : float The p-value for the test. """ statistic = np.asarray(self.chi2_contribs).sum() df = np.prod(np.asarray(self.table.shape) - 1) pvalue = 1 - stats.chi2.cdf(statistic, df) b = _Bunch() b.statistic = statistic b.df = df b.pvalue = pvalue return b
[docs] def test_ordinal_association(self, row_scores=None, col_scores=None): """ Assess independence between two ordinal variables. This is the 'linear by linear' association test, which uses weights or scores to target the test to have more power against ordered alternatives. Parameters ---------- row_scores : array_like An array of numeric row scores col_scores : array_like An array of numeric column scores Returns ------- A bunch with the following attributes: statistic : float The test statistic. null_mean : float The expected value of the test statistic under the null hypothesis. null_sd : float The standard deviation of the test statistic under the null hypothesis. zscore : float The Z-score for the test statistic. pvalue : float The p-value for the test. Notes ----- The scores define the trend to which the test is most sensitive. Using the default row and column scores gives the Cochran-Armitage trend test. """ if row_scores is None: row_scores = np.arange(self.table.shape[0]) if col_scores is None: col_scores = np.arange(self.table.shape[1]) if len(row_scores) != self.table.shape[0]: msg = ("The length of `row_scores` must match the first " + "dimension of `table`.") raise ValueError(msg) if len(col_scores) != self.table.shape[1]: msg = ("The length of `col_scores` must match the second " + "dimension of `table`.") raise ValueError(msg) # The test statistic statistic = np.dot(row_scores, np.dot(self.table, col_scores)) # Some needed quantities n_obs = self.table.sum() rtot = self.table.sum(1) um = np.dot(row_scores, rtot) u2m = np.dot(row_scores**2, rtot) ctot = self.table.sum(0) vn = np.dot(col_scores, ctot) v2n = np.dot(col_scores**2, ctot) # The null mean and variance of the test statistic e_stat = um * vn / n_obs v_stat = (u2m - um**2 / n_obs) * (v2n - vn**2 / n_obs) / (n_obs - 1) sd_stat = np.sqrt(v_stat) zscore = (statistic - e_stat) / sd_stat pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) b = _Bunch() b.statistic = statistic b.null_mean = e_stat b.null_sd = sd_stat b.zscore = zscore b.pvalue = pvalue return b
@cache_readonly def marginal_probabilities(self): """ Estimate marginal probability distributions for the rows and columns. Returns ------- row : ndarray Marginal row probabilities col : ndarray Marginal column probabilities """ n = self.table.sum() row = self.table.sum(1) / n col = self.table.sum(0) / n if isinstance(self.table_orig, pd.DataFrame): row = pd.Series(row, self.table_orig.index) col = pd.Series(col, self.table_orig.columns) return row, col @cache_readonly def independence_probabilities(self): """ Returns fitted joint probabilities under independence. The returned table is outer(row, column), where row and column are the estimated marginal distributions of the rows and columns. """ row, col = self.marginal_probabilities itab = np.outer(row, col) if isinstance(self.table_orig, pd.DataFrame): itab = pd.DataFrame(itab, self.table_orig.index, self.table_orig.columns) return itab @cache_readonly def fittedvalues(self): """ Returns fitted cell counts under independence. The returned cell counts are estimates under a model where the rows and columns of the table are independent. """ probs = self.independence_probabilities fit = self.table.sum() * probs return fit @cache_readonly def resid_pearson(self): """ Returns Pearson residuals. The Pearson residuals are calculated under a model where the rows and columns of the table are independent. """ fit = self.fittedvalues resids = (self.table - fit) / np.sqrt(fit) return resids @cache_readonly def standardized_resids(self): """ Returns standardized residuals under independence. """ row, col = self.marginal_probabilities sresids = self.resid_pearson / np.sqrt(np.outer(1 - row, 1 - col)) return sresids @cache_readonly def chi2_contribs(self): """ Returns the contributions to the chi^2 statistic for independence. The returned table contains the contribution of each cell to the chi^2 test statistic for the null hypothesis that the rows and columns are independent. """ return self.resid_pearson**2 @cache_readonly def local_log_oddsratios(self): """ Returns local log odds ratios. The local log odds ratios are the log odds ratios calculated for contiguous 2x2 sub-tables. """ ta = self.table.copy() a = ta[0:-1, 0:-1] b = ta[0:-1, 1:] c = ta[1:, 0:-1] d = ta[1:, 1:] tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt @cache_readonly def local_oddsratios(self): """ Returns local odds ratios. See documentation for local_log_oddsratios. """ return np.exp(self.local_log_oddsratios) @cache_readonly def cumulative_log_oddsratios(self): """ Returns cumulative log odds ratios. The cumulative log odds ratios for a contingency table with ordered rows and columns are calculated by collapsing all cells to the left/right and above/below a given point, to obtain a 2x2 table from which a log odds ratio can be calculated. """ ta = self.table.cumsum(0).cumsum(1) a = ta[0:-1, 0:-1] b = ta[0:-1, -1:] - a c = ta[-1:, 0:-1] - a d = ta[-1, -1] - (a + b + c) tab = np.log(a) + np.log(d) - np.log(b) - np.log(c) rslt = np.empty(self.table.shape, np.float64) rslt *= np.nan rslt[0:-1, 0:-1] = tab if isinstance(self.table_orig, pd.DataFrame): rslt = pd.DataFrame(rslt, index=self.table_orig.index, columns=self.table_orig.columns) return rslt @cache_readonly def cumulative_oddsratios(self): """ Returns the cumulative odds ratios for a contingency table. See documentation for cumulative_log_oddsratio. """ return np.exp(self.cumulative_log_oddsratios)
[docs] class SquareTable(Table): """ Methods for analyzing a square contingency table. Parameters ---------- table : array_like A square contingency table, or DataFrame that is converted to a square form. shift_zeros : bool If True and any cell count is zero, add 0.5 to all values in the table. Notes ----- These methods should only be used when the rows and columns of the table have the same categories. If `table` is provided as a Pandas DataFrame, the row and column indices will be extended to create a square table, inserting zeros where a row or column is missing. Otherwise the table should be provided in a square form, with the (implicit) row and column categories appearing in the same order. """ def __init__(self, table, shift_zeros=True): table = _make_df_square(table) # Non-pandas passes through k1, k2 = table.shape if k1 != k2: raise ValueError('table must be square') super(SquareTable, self).__init__(table, shift_zeros)
[docs] def symmetry(self, method="bowker"): """ Test for symmetry of a joint distribution. This procedure tests the null hypothesis that the joint distribution is symmetric around the main diagonal, that is .. math:: p_{i, j} = p_{j, i} for all i, j Returns ------- Bunch A bunch with attributes * statistic : float chisquare test statistic * p-value : float p-value of the test statistic based on chisquare distribution * df : int degrees of freedom of the chisquare distribution Notes ----- The implementation is based on the SAS documentation. R includes it in `mcnemar.test` if the table is not 2 by 2. However a more direct generalization of the McNemar test to larger tables is provided by the homogeneity test (TableSymmetry.homogeneity). The p-value is based on the chi-square distribution which requires that the sample size is not very small to be a good approximation of the true distribution. For 2x2 contingency tables the exact distribution can be obtained with `mcnemar` See Also -------- mcnemar homogeneity """ if method.lower() != "bowker": raise ValueError("method for symmetry testing must be 'bowker'") k = self.table.shape[0] upp_idx = np.triu_indices(k, 1) tril = self.table.T[upp_idx] # lower triangle in column order triu = self.table[upp_idx] # upper triangle in row order statistic = ((tril - triu)**2 / (tril + triu + 1e-20)).sum() df = k * (k-1) / 2. pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b
[docs] def homogeneity(self, method="stuart_maxwell"): """ Compare row and column marginal distributions. Parameters ---------- method : str Either 'stuart_maxwell' or 'bhapkar', leading to two different estimates of the covariance matrix for the estimated difference between the row margins and the column margins. Returns ------- Bunch A bunch with attributes: * statistic : float The chi^2 test statistic * pvalue : float The p-value of the test statistic * df : int The degrees of freedom of the reference distribution Notes ----- For a 2x2 table this is equivalent to McNemar's test. More generally the procedure tests the null hypothesis that the marginal distribution of the row factor is equal to the marginal distribution of the column factor. For this to be meaningful, the two factors must have the same sample space (i.e. the same categories). """ if self.table.shape[0] < 1: raise ValueError('table is empty') elif self.table.shape[0] == 1: b = _Bunch() b.statistic = 0 b.pvalue = 1 b.df = 0 return b method = method.lower() if method not in ["bhapkar", "stuart_maxwell"]: raise ValueError("method '%s' for homogeneity not known" % method) n_obs = self.table.sum() pr = self.table.astype(np.float64) / n_obs # Compute margins, eliminate last row/column so there is no # degeneracy row = pr.sum(1)[0:-1] col = pr.sum(0)[0:-1] pr = pr[0:-1, 0:-1] # The estimated difference between row and column margins. d = col - row # The degrees of freedom of the chi^2 reference distribution. df = pr.shape[0] if method == "bhapkar": vmat = -(pr + pr.T) - np.outer(d, d) dv = col + row - 2*np.diag(pr) - d**2 np.fill_diagonal(vmat, dv) elif method == "stuart_maxwell": vmat = -(pr + pr.T) dv = row + col - 2*np.diag(pr) np.fill_diagonal(vmat, dv) try: statistic = n_obs * np.dot(d, np.linalg.solve(vmat, d)) except np.linalg.LinAlgError: warnings.warn("Unable to invert covariance matrix", sm_exceptions.SingularMatrixWarning) b = _Bunch() b.statistic = np.nan b.pvalue = np.nan b.df = df return b pvalue = 1 - stats.chi2.cdf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue b.df = df return b
[docs] def summary(self, alpha=0.05, float_format="%.3f"): """ Produce a summary of the analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. float_format : str Used to format numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ fmt = float_format headers = ["Statistic", "P-value", "DF"] stubs = ["Symmetry", "Homogeneity"] sy = self.symmetry() hm = self.homogeneity() data = [[fmt % sy.statistic, fmt % sy.pvalue, '%d' % sy.df], [fmt % hm.statistic, fmt % hm.pvalue, '%d' % hm.df]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab
[docs] class Table2x2(SquareTable): """ Analyses that can be performed on a 2x2 contingency table. Parameters ---------- table : array_like A 2x2 contingency table shift_zeros : bool If true, 0.5 is added to all cells of the table if any cell is equal to zero. Notes ----- The inference procedures used here are all based on a sampling model in which the units are independent and identically distributed, with each unit being classified with respect to two categorical variables. Note that for the risk ratio, the analysis is not symmetric with respect to the rows and columns of the contingency table. The two rows define population subgroups, column 0 is the number of 'events', and column 1 is the number of 'non-events'. """ def __init__(self, table, shift_zeros=True): if type(table) is list: table = np.asarray(table) if (table.ndim != 2) or (table.shape[0] != 2) or (table.shape[1] != 2): raise ValueError("Table2x2 takes a 2x2 table as input.") super(Table2x2, self).__init__(table, shift_zeros)
[docs] @classmethod def from_data(cls, data, shift_zeros=True): """ Construct a Table object from data. Parameters ---------- data : array_like The raw data, the first column defines the rows and the second column defines the columns. shift_zeros : bool If True, and if there are any zeros in the contingency table, add 0.5 to all four cells of the table. """ if isinstance(data, pd.DataFrame): table = pd.crosstab(data.iloc[:, 0], data.iloc[:, 1]) else: table = pd.crosstab(data[:, 0], data[:, 1]) return cls(table, shift_zeros)
@cache_readonly def log_oddsratio(self): """ Returns the log odds ratio for a 2x2 table. """ f = self.table.flatten() return np.dot(np.log(f), np.r_[1, -1, -1, 1]) @cache_readonly def oddsratio(self): """ Returns the odds ratio for a 2x2 table. """ return (self.table[0, 0] * self.table[1, 1] / (self.table[0, 1] * self.table[1, 0])) @cache_readonly def log_oddsratio_se(self): """ Returns the standard error for the log odds ratio. """ return np.sqrt(np.sum(1 / self.table))
[docs] def oddsratio_pvalue(self, null=1): """ P-value for a hypothesis test about the odds ratio. Parameters ---------- null : float The null value of the odds ratio. """ return self.log_oddsratio_pvalue(np.log(null))
[docs] def log_oddsratio_pvalue(self, null=0): """ P-value for a hypothesis test about the log odds ratio. Parameters ---------- null : float The null value of the log odds ratio. """ zscore = (self.log_oddsratio - null) / self.log_oddsratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue
[docs] def log_oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence level for the log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lor = self.log_oddsratio se = self.log_oddsratio_se lcb = lor - f * se ucb = lor + f * se return lcb, ucb
[docs] def oddsratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_oddsratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb)
@cache_readonly def riskratio(self): """ Returns the risk ratio for a 2x2 table. The risk ratio is calculated with respect to the rows. """ p = self.table[:, 0] / self.table.sum(1) return p[0] / p[1] @cache_readonly def log_riskratio(self): """ Returns the log of the risk ratio. """ return np.log(self.riskratio) @cache_readonly def log_riskratio_se(self): """ Returns the standard error of the log of the risk ratio. """ n = self.table.sum(1) p = self.table[:, 0] / n va = np.sum((1 - p) / (n*p)) return np.sqrt(va)
[docs] def riskratio_pvalue(self, null=1): """ p-value for a hypothesis test about the risk ratio. Parameters ---------- null : float The null value of the risk ratio. """ return self.log_riskratio_pvalue(np.log(null))
[docs] def log_riskratio_pvalue(self, null=0): """ p-value for a hypothesis test about the log risk ratio. Parameters ---------- null : float The null value of the log risk ratio. """ zscore = (self.log_riskratio - null) / self.log_riskratio_se pvalue = 2 * stats.norm.cdf(-np.abs(zscore)) return pvalue
[docs] def log_riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the log risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ f = -stats.norm.ppf(alpha / 2) lrr = self.log_riskratio se = self.log_riskratio_se lcb = lrr - f * se ucb = lrr + f * se return lcb, ucb
[docs] def riskratio_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the risk ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ lcb, ucb = self.log_riskratio_confint(alpha, method=method) return np.exp(lcb), np.exp(ucb)
[docs] def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ Summarizes results for a 2x2 table analysis. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used to format the numeric values in the table. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x headers = ["Estimate", "SE", "LCB", "UCB", "p-value"] stubs = ["Odds ratio", "Log odds ratio", "Risk ratio", "Log risk ratio"] lcb1, ucb1 = self.oddsratio_confint(alpha, method) lcb2, ucb2 = self.log_oddsratio_confint(alpha, method) lcb3, ucb3 = self.riskratio_confint(alpha, method) lcb4, ucb4 = self.log_riskratio_confint(alpha, method) data = [[fmt(x) for x in [self.oddsratio, "", lcb1, ucb1, self.oddsratio_pvalue()]], [fmt(x) for x in [self.log_oddsratio, self.log_oddsratio_se, lcb2, ucb2, self.oddsratio_pvalue()]], [fmt(x) for x in [self.riskratio, "", lcb3, ucb3, self.riskratio_pvalue()]], [fmt(x) for x in [self.log_riskratio, self.log_riskratio_se, lcb4, ucb4, self.riskratio_pvalue()]]] tab = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') return tab
[docs] class StratifiedTable: """ Analyses for a collection of 2x2 contingency tables. Such a collection may arise by stratifying a single 2x2 table with respect to another factor. This class implements the 'Cochran-Mantel-Haenszel' and 'Breslow-Day' procedures for analyzing collections of 2x2 contingency tables. Parameters ---------- tables : list or ndarray Either a list containing several 2x2 contingency tables, or a 2x2xk ndarray in which each slice along the third axis is a 2x2 contingency table. Notes ----- This results are based on a sampling model in which the units are independent both within and between strata. """ def __init__(self, tables, shift_zeros=False): if isinstance(tables, np.ndarray): sp = tables.shape if (len(sp) != 3) or (sp[0] != 2) or (sp[1] != 2): raise ValueError("If an ndarray, argument must be 2x2xn") table = tables * 1. # use atleast float dtype else: if any([np.asarray(x).shape != (2, 2) for x in tables]): m = "If `tables` is a list, all of its elements should be 2x2" raise ValueError(m) # Create a data cube table = np.dstack(tables).astype(np.float64) if shift_zeros: zx = (table == 0).sum(0).sum(0) ix = np.flatnonzero(zx > 0) if len(ix) > 0: table = table.copy() table[:, :, ix] += 0.5 self.table = table self._cache = {} # Quantities to precompute. Table entries are [[a, b], [c, # d]], 'ad' is 'a * d', 'apb' is 'a + b', 'dma' is 'd - a', # etc. self._apb = table[0, 0, :] + table[0, 1, :] self._apc = table[0, 0, :] + table[1, 0, :] self._bpd = table[0, 1, :] + table[1, 1, :] self._cpd = table[1, 0, :] + table[1, 1, :] self._ad = table[0, 0, :] * table[1, 1, :] self._bc = table[0, 1, :] * table[1, 0, :] self._apd = table[0, 0, :] + table[1, 1, :] self._dma = table[1, 1, :] - table[0, 0, :] self._n = table.sum(0).sum(0)
[docs] @classmethod def from_data(cls, var1, var2, strata, data): """ Construct a StratifiedTable object from data. Parameters ---------- var1 : int or string The column index or name of `data` specifying the variable defining the rows of the contingency table. The variable must have only two distinct values. var2 : int or string The column index or name of `data` specifying the variable defining the columns of the contingency table. The variable must have only two distinct values. strata : int or string The column index or name of `data` specifying the variable defining the strata. data : array_like The raw data. A cross-table for analysis is constructed from the first two columns. Returns ------- StratifiedTable """ if not isinstance(data, pd.DataFrame): data1 = pd.DataFrame(index=np.arange(data.shape[0]), columns=[var1, var2, strata]) data1[data1.columns[var1]] = data[:, var1] data1[data1.columns[var2]] = data[:, var2] data1[data1.columns[strata]] = data[:, strata] else: data1 = data[[var1, var2, strata]] gb = data1.groupby(strata).groups tables = [] for g in gb: ii = gb[g] tab = pd.crosstab(data1.loc[ii, var1], data1.loc[ii, var2]) if (tab.shape != np.r_[2, 2]).any(): msg = "Invalid table dimensions" raise ValueError(msg) tables.append(np.asarray(tab)) return cls(tables)
[docs] def test_null_odds(self, correction=False): """ Test that all tables have odds ratio equal to 1. This is the 'Mantel-Haenszel' test. Parameters ---------- correction : bool If True, use the continuity correction when calculating the test statistic. Returns ------- Bunch A bunch containing the chi^2 test statistic and p-value. """ statistic = np.sum(self.table[0, 0, :] - self._apb * self._apc / self._n) statistic = np.abs(statistic) if correction: statistic -= 0.5 statistic = statistic**2 denom = self._apb * self._apc * self._bpd * self._cpd denom /= (self._n**2 * (self._n - 1)) denom = np.sum(denom) statistic /= denom # df is always 1 pvalue = 1 - stats.chi2.cdf(statistic, 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
@cache_readonly def oddsratio_pooled(self): """ The pooled odds ratio. The value is an estimate of a common odds ratio across all of the stratified tables. """ odds_ratio = np.sum(self._ad / self._n) / np.sum(self._bc / self._n) return odds_ratio @cache_readonly def logodds_pooled(self): """ Returns the logarithm of the pooled odds ratio. See oddsratio_pooled for more information. """ return np.log(self.oddsratio_pooled) @cache_readonly def riskratio_pooled(self): """ Estimate of the pooled risk ratio. """ acd = self.table[0, 0, :] * self._cpd cab = self.table[1, 0, :] * self._apb rr = np.sum(acd / self._n) / np.sum(cab / self._n) return rr @cache_readonly def logodds_pooled_se(self): """ Estimated standard error of the pooled log odds ratio References ---------- J. Robins, N. Breslow, S. Greenland. "Estimators of the Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata Limiting Models." Biometrics 42, no. 2 (1986): 311-23. """ adns = np.sum(self._ad / self._n) bcns = np.sum(self._bc / self._n) lor_va = np.sum(self._apd * self._ad / self._n**2) / adns**2 mid = self._apd * self._bc / self._n**2 mid += (1 - self._apd / self._n) * self._ad / self._n mid = np.sum(mid) mid /= (adns * bcns) lor_va += mid lor_va += np.sum((1 - self._apd / self._n) * self._bc / self._n) / bcns**2 lor_va /= 2 lor_se = np.sqrt(lor_va) return lor_se
[docs] def logodds_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled log odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lor = np.log(self.oddsratio_pooled) lor_se = self.logodds_pooled_se f = -stats.norm.ppf(alpha / 2) lcb = lor - f * lor_se ucb = lor + f * lor_se return lcb, ucb
[docs] def oddsratio_pooled_confint(self, alpha=0.05, method="normal"): """ A confidence interval for the pooled odds ratio. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the interval. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. Returns ------- lcb : float The lower confidence limit. ucb : float The upper confidence limit. """ lcb, ucb = self.logodds_pooled_confint(alpha, method=method) lcb = np.exp(lcb) ucb = np.exp(ucb) return lcb, ucb
[docs] def test_equal_odds(self, adjust=False): """ Test that all odds ratios are identical. This is the 'Breslow-Day' testing procedure. Parameters ---------- adjust : bool Use the 'Tarone' adjustment to achieve the chi^2 asymptotic distribution. Returns ------- A bunch containing the following attributes: statistic : float The chi^2 test statistic. p-value : float The p-value for the test. """ table = self.table r = self.oddsratio_pooled a = 1 - r b = r * (self._apb + self._apc) + self._dma c = -r * self._apb * self._apc # Expected value of first cell dr = np.sqrt(b**2 - 4*a*c) e11 = (-b + dr) / (2*a) # Variance of the first cell v11 = (1 / e11 + 1 / (self._apc - e11) + 1 / (self._apb - e11) + 1 / (self._dma + e11)) v11 = 1 / v11 statistic = np.sum((table[0, 0, :] - e11)**2 / v11) if adjust: adj = table[0, 0, :].sum() - e11.sum() adj = adj**2 adj /= np.sum(v11) statistic -= adj pvalue = 1 - stats.chi2.cdf(statistic, table.shape[2] - 1) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
[docs] def summary(self, alpha=0.05, float_format="%.3f", method="normal"): """ A summary of all the main results. Parameters ---------- alpha : float `1 - alpha` is the nominal coverage probability of the confidence intervals. float_format : str Used for formatting numeric values in the summary. method : str The method for producing the confidence interval. Currently must be 'normal' which uses the normal approximation. """ def fmt(x): if isinstance(x, str): return x return float_format % x co_lcb, co_ucb = self.oddsratio_pooled_confint( alpha=alpha, method=method) clo_lcb, clo_ucb = self.logodds_pooled_confint( alpha=alpha, method=method) headers = ["Estimate", "LCB", "UCB"] stubs = ["Pooled odds", "Pooled log odds", "Pooled risk ratio", ""] data = [[fmt(x) for x in [self.oddsratio_pooled, co_lcb, co_ucb]], [fmt(x) for x in [self.logodds_pooled, clo_lcb, clo_ucb]], [fmt(x) for x in [self.riskratio_pooled, "", ""]], ['', '', '']] tab1 = iolib.SimpleTable(data, headers, stubs, data_aligns="r", table_dec_above='') headers = ["Statistic", "P-value", ""] stubs = ["Test of OR=1", "Test constant OR"] rslt1 = self.test_null_odds() rslt2 = self.test_equal_odds() data = [[fmt(x) for x in [rslt1.statistic, rslt1.pvalue, ""]], [fmt(x) for x in [rslt2.statistic, rslt2.pvalue, ""]]] tab2 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab2) headers = ["", "", ""] stubs = ["Number of tables", "Min n", "Max n", "Avg n", "Total n"] ss = self.table.sum(0).sum(0) data = [["%d" % self.table.shape[2], '', ''], ["%d" % min(ss), '', ''], ["%d" % max(ss), '', ''], ["%.0f" % np.mean(ss), '', ''], ["%d" % sum(ss), '', '', '']] tab3 = iolib.SimpleTable(data, headers, stubs, data_aligns="r") tab1.extend(tab3) return tab1
[docs] def mcnemar(table, exact=True, correction=True): """ McNemar test of homogeneity. Parameters ---------- table : array_like A square contingency table. exact : bool If exact is true, then the binomial distribution will be used. If exact is false, then the chisquare distribution will be used, which is the approximation to the distribution of the test statistic for large sample sizes. correction : bool If true, then a continuity correction is used for the chisquare distribution (if exact is false.) Returns ------- A bunch with attributes: statistic : float or int, array The test statistic is the chisquare statistic if exact is false. If the exact binomial distribution is used, then this contains the min(n1, n2), where n1, n2 are cases that are zero in one sample but one in the other sample. pvalue : float or array p-value of the null hypothesis of equal marginal distributions. Notes ----- This is a special case of Cochran's Q test, and of the homogeneity test. The results when the chisquare distribution is used are identical, except for continuity correction. """ table = _make_df_square(table) table = np.asarray(table, dtype=np.float64) n1, n2 = table[0, 1], table[1, 0] if exact: statistic = np.minimum(n1, n2) # binom is symmetric with p=0.5 # SciPy 1.7+ requires int arguments int_sum = int(n1 + n2) if int_sum != (n1 + n2): raise ValueError( "exact can only be used with tables containing integers." ) pvalue = stats.binom.cdf(statistic, int_sum, 0.5) * 2 pvalue = np.minimum(pvalue, 1) # limit to 1 if n1==n2 else: corr = int(correction) # convert bool to 0 or 1 statistic = (np.abs(n1 - n2) - corr)**2 / (1. * (n1 + n2)) df = 1 pvalue = stats.chi2.sf(statistic, df) b = _Bunch() b.statistic = statistic b.pvalue = pvalue return b
[docs] def cochrans_q(x, return_object=True): """ Cochran's Q test for identical binomial proportions. Parameters ---------- x : array_like, 2d (N, k) data with N cases and k variables return_object : bool Return values as bunch instead of as individual values. Returns ------- Returns a bunch containing the following attributes, or the individual values according to the value of `return_object`. statistic : float test statistic pvalue : float pvalue from the chisquare distribution Notes ----- Cochran's Q is a k-sample extension of the McNemar test. If there are only two groups, then Cochran's Q test and the McNemar test are equivalent. The procedure tests that the probability of success is the same for every group. The alternative hypothesis is that at least two groups have a different probability of success. In Wikipedia terminology, rows are blocks and columns are treatments. The number of rows N, should be large for the chisquare distribution to be a good approximation. The Null hypothesis of the test is that all treatments have the same effect. References ---------- https://en.wikipedia.org/wiki/Cochran_test SAS Manual for NPAR TESTS """ x = np.asarray(x, dtype=np.float64) gruni = np.unique(x) N, k = x.shape count_row_success = (x == gruni[-1]).sum(1, float) count_col_success = (x == gruni[-1]).sum(0, float) count_row_ss = count_row_success.sum() count_col_ss = count_col_success.sum() assert count_row_ss == count_col_ss # just a calculation check # From the SAS manual q_stat = ((k-1) * (k * np.sum(count_col_success**2) - count_col_ss**2) / (k * count_row_ss - np.sum(count_row_success**2))) # Note: the denominator looks just like k times the variance of # the columns # Wikipedia uses a different, but equivalent expression # q_stat = (k-1) * (k * np.sum(count_row_success**2) - count_row_ss**2) # / (k * count_col_ss - np.sum(count_col_success**2)) df = k - 1 pvalue = stats.chi2.sf(q_stat, df) if return_object: b = _Bunch() b.statistic = q_stat b.df = df b.pvalue = pvalue return b return q_stat, pvalue, df

Last update: Dec 14, 2023