statsmodels.graphics.tsaplots.plot_pacf¶
-
statsmodels.graphics.tsaplots.plot_pacf(x, ax=
None, lags=None, alpha=0.05, method='ywm', use_vlines=True, title='Partial Autocorrelation', zero=True, vlines_kwargs=None, **kwargs)[source]¶ Plot the partial autocorrelation function
- Parameters:¶
- x : array_like¶
Array of time-series values
- ax : AxesSubplot, optional¶
If given, this subplot is used to plot in instead of a new figure being created.
- lags : {int, array_like}, optional¶
An int or array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided,
lags=np.arange(len(corr))is used.- alpha : float, optional¶
If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x))
- method : str¶
Specifies which method for the calculations to use:
”ywm” or “ywmle” : Yule-Walker without adjustment. Default.
”yw” or “ywadjusted” : Yule-Walker with sample-size adjustment in denominator for acovf. Default.
”ols” : regression of time series on lags of it and on constant.
”ols-inefficient” : regression of time series on lags using a single common sample to estimate all pacf coefficients.
”ols-adjusted” : regression of time series on lags with a bias adjustment.
”ld” or “ldadjusted” : Levinson-Durbin recursion with bias correction.
”ldb” or “ldbiased” : Levinson-Durbin recursion without bias correction.
- use_vlines : bool, optional¶
If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is ‘o’; it can be overridden with a
markerkwarg.- title : str, optional¶
Title to place on plot. Default is ‘Partial Autocorrelation’
- zero : bool, optional¶
Flag indicating whether to include the 0-lag autocorrelation. Default is True.
- vlines_kwargs : dict, optional¶
Optional dictionary of keyword arguments that are passed to vlines.
- **kwargs : kwargs, optional¶
Optional keyword arguments that are directly passed on to the Matplotlib
plotandaxhlinefunctions.
- Returns:¶
If ax is None, the created figure. Otherwise the figure to which ax is connected.
- Return type:¶
Figure
Notes
Plots lags on the horizontal and the correlations on vertical axis. Adapted from matplotlib’s xcorr.
Data are plotted as
plot(lags, corr, **kwargs)kwargs is used to pass matplotlib optional arguments to both the line tracing the autocorrelations and for the horizontal line at 0. These options must be valid for a Line2D object.
vlines_kwargs is used to pass additional optional arguments to the vertical lines connecting each autocorrelation to the axis. These options must be valid for a LineCollection object.
Examples
>>> import pandas as pd >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm>>> dta = sm.datasets.sunspots.load_pandas().data >>> dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008')) >>> del dta["YEAR"] >>> sm.graphics.tsa.plot_pacf(dta.values.squeeze(), lags=40, method="ywm") >>> plt.show()(
Source code,png,hires.png,pdf)