statsmodels.nonparametric.kernel_regression.KernelReg¶
-
class statsmodels.nonparametric.kernel_regression.KernelReg(endog, exog, var_type, reg_type=
'll', bw='cv_ls', ckertype='gaussian', okertype='wangryzin', ukertype='aitchisonaitken', defaults=None, *, seed=None)[source]¶ Nonparametric kernel regression class.
Calculates the conditional mean
E[y|X]wherey = g(X) + e. Note that the “local constant” type of regression provided here is also known as Nadaraya-Watson kernel regression; “local linear” is an extension of that which suffers less from bias issues at the edge of the support. Note that specifying a custom kernel works only with “local linear” kernel regression. For example, a customtricubekernel yields LOESS regression.- Parameters:¶
- endogarray_like
This is the dependent variable.
- exogarray_like
The training data for the independent variable(s) Each element in the list is a separate variable
- var_type
str The type of the variables, one character per variable:
c: continuous
u: unordered (discrete)
o: ordered (discrete)
- reg_type{‘lc’, ‘ll’},
optional Type of regression estimator. ‘lc’ means local constant and ‘ll’ local Linear estimator. Default is ‘ll’
- bw
stror array_like,optional Either a user-specified bandwidth or the method for bandwidth selection. If a string, valid values are ‘cv_ls’ (least-squares cross-validation) and ‘aic’ (AIC Hurvich bandwidth estimation). Default is ‘cv_ls’. User specified bandwidth must have as many entries as the number of variables.
- ckertype
str,optional The kernel used for the continuous variables.
- okertype
str,optional The kernel used for the ordered discrete variables.
- ukertype
str,optional The kernel used for the unordered discrete variables.
- defaults
EstimatorSettingsinstance,optional The default values for the efficient bandwidth estimation.
- seed{
int,Generator,RandomState},optional A seed to use. If None, will use the global RandomState.
Deprecated since version 0.15.0: In release 0.17.0 or after January 2028, whichever comes sooner, using None will initialize a new numpy.random.default_rng using system entropy.
- Attributes:¶
- bwarray_like
The bandwidth parameters.
Methods
aic_hurvich(bw[, func])Computes the AIC Hurvich criteria for the estimation of the bandwidth.
cv_loo(bw, func)The cross-validation function with leave-one-out estimator.
fit([data_predict])Returns the mean and marginal effects at the data_predict points.
Returns the R-Squared for the nonparametric regression.
sig_test(var_pos[, nboot, nested_res, pivot])Significance test for the variables in the regression.