statsmodels.regression.quantile_regression.QuantReg.fit¶
-
QuantReg.fit(q=
0.5, vcov='robust', kernel='epa', bandwidth='hsheather', max_iter=1000, p_tol=1e-06, **kwargs)[source]¶ Solve by Iterative Weighted Least Squares
- Parameters:¶
- q : float¶
Quantile must be strictly between 0 and 1
- vcov : str, method used to calculate the variance-covariance matrix¶
of the parameters. Default is
robust:robust : heteroskedasticity robust standard errors (as suggested in Greene 6th edition)
iid : iid errors (as in Stata 12)
- kernel : str, kernel to use in the kernel density estimation for the¶
asymptotic covariance matrix:
epa: Epanechnikov
cos: Cosine
gau: Gaussian
par: Parzene
- bandwidth : str, Bandwidth selection method in kernel density¶
estimation for asymptotic covariance estimate (full references in QuantReg docstring):
hsheather: Hall-Sheather (1988)
bofinger: Bofinger (1975)
chamberlain: Chamberlain (1994)