statsmodels.distributions.copula.api.ExtremeValueCopula¶
-
class statsmodels.distributions.copula.api.ExtremeValueCopula(transform, args=
(), k_dim=2)[source]¶ Extreme value copula constructed from Pickand’s dependence function.
Currently only bivariate copulas are available.
- Parameters:¶
- transform : instance of transformation class¶
Pickand’s dependence function with required methods including first and second derivatives
- args : tuple¶
Optional copula parameters. Copula parameters can be either provided when creating the instance or as arguments when calling methods.
- k_dim : int¶
Currently only bivariate extreme value copulas are supported.
Notes
currently the following dependence function and copulas are available
AsymLogistic
AsymNegLogistic
AsymMixed
HR
TEV and AsymBiLogistic currently do not have required derivatives for pdf.
See also
dep_func_evMethods
cdf(u[, args])Evaluate cdf of bivariate extreme value copula.
conditional_2g1(u[, args])conditional distribution
fit_corr_param(data)Copula correlation parameter using Kendall's tau of sample data.
logpdf(u[, args])Evaluate log-pdf of bivariate extreme value copula.
pdf(u[, args])Evaluate pdf of bivariate extreme value copula.
plot_pdf([ticks_nbr, ax])Plot the PDF.
plot_scatter([sample, nobs, random_state, ax])Sample the copula and plot.
rvs([nobs, args, random_state])Draw n in the half-open interval
[0, 1).tau_simulated([nobs, random_state])Kendall's tau based on simulated samples.