statsmodels.graphics.tsaplots.plot_accf_grid¶
-
statsmodels.graphics.tsaplots.plot_accf_grid(x, *, varnames=
None, fig=None, lags=None, negative_lags=True, alpha=0.05, use_vlines=True, adjusted=False, fft=False, missing='none', zero=True, auto_ylims=False, bartlett_confint=False, vlines_kwargs=None, **kwargs)[source]¶ Plot auto/cross-correlation grid
Plots lags on the horizontal axis and the correlations on the vertical axis of each graph.
- Parameters:¶
- xarray_like
2D array of time-series values: rows are observations, columns are variables.
- varnames: sequence of str, optional
Variable names to use in plot titles. If
xis a pandas dataframe andvarnamesis provided, it overrides the column names of the dataframe. Ifvarnamesis not provided andxis not a dataframe, variable namesx[0],x[1], etc. are generated.- fig
Matplotlibfigureinstance,optional If given, this figure is used to plot in, otherwise a new figure is created.
- lags{
int, array_like},optional An int or array of lag values, used on horizontal axes. Uses
np.arange(lags)when lags is an int. If not provided,lags=np.arange(len(corr))is used.- negative_lags: bool, optional
If True, negative lags are shown on the horizontal axes of plots below the main diagonal.
- alphascalar,
optional If a number is given, the confidence intervals for the given level are plotted, e.g. if alpha=.05, 95 % confidence intervals are shown. If None, confidence intervals are not shown on the plot.
- use_vlinesbool,
optional If True, shows vertical lines and markers for the correlation values. If False, only shows markers. The default marker is ‘o’; it can be overridden with a
markerkwarg.- adjustedbool
If True, then denominators for correlations are n-k, otherwise n.
- fftbool,
optional If True, computes the ACF via FFT.
- missing
str,optional A string in [‘none’, ‘raise’, ‘conservative’, ‘drop’] specifying how NaNs are to be treated.
- zerobool,
optional Flag indicating whether to include the 0-lag autocorrelations (which are always equal to 1). Default is True.
- auto_ylimsbool,
optional If True, adjusts automatically the vertical axis limits to correlation values.
- bartlett_confintbool,
defaultFalse If True, use Bartlett’s formula to calculate confidence intervals in auto-correlation plots. See the description of
plot_acffor details. This argument does not affect cross-correlation plots.- vlines_kwargs
dict,optional Optional dictionary of keyword arguments that are passed to vlines.
- **kwargs
kwargs,optional Optional keyword arguments that are directly passed on to the Matplotlib
plotandaxhlinefunctions.
- Returns:¶
FigureIf fig is None, the created figure. Otherwise, fig is returned. Plots on the grid show the cross-correlation of the row variable with the lags of the column variable.
See also
statsmodels.graphics.tsaplots
Examples
>>> import pandas as pd >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm>>> dta = sm.datasets.macrodata.load_pandas().data >>> diffed = dta.diff().dropna() >>> sm.graphics.tsa.plot_accf_grid(diffed[["unemp", "infl"]]) >>> plt.show()