Exponential smoothing

Let us consider chapter 7 of the excellent treatise on the subject of Exponential Smoothing By Hyndman and Athanasopoulos [1]. We will work through all the examples in the chapter as they unfold.

[1] [Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice. OTexts, 2014.](https://www.otexts.org/fpp/7)

Loading data

First we load some data. We have included the R data in the notebook for expedience.

[1]:
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt
%matplotlib inline

data = [446.6565,  454.4733,  455.663 ,  423.6322,  456.2713,  440.5881, 425.3325,  485.1494,  506.0482,  526.792 ,  514.2689,  494.211 ]
index= pd.date_range(start='1996', end='2008', freq='A')
oildata = pd.Series(data, index)

data = [17.5534,  21.86  ,  23.8866,  26.9293,  26.8885,  28.8314, 30.0751,  30.9535,  30.1857,  31.5797,  32.5776,  33.4774, 39.0216,  41.3864,  41.5966]
index= pd.date_range(start='1990', end='2005', freq='A')
air = pd.Series(data, index)

data = [263.9177,  268.3072,  260.6626,  266.6394,  277.5158,  283.834 , 290.309 ,  292.4742,  300.8307,  309.2867,  318.3311,  329.3724, 338.884 ,  339.2441,  328.6006,  314.2554,  314.4597,  321.4138, 329.7893,  346.3852,  352.2979,  348.3705,  417.5629,  417.1236, 417.7495,  412.2339,  411.9468,  394.6971,  401.4993,  408.2705, 414.2428]
index= pd.date_range(start='1970', end='2001', freq='A')
livestock2 = pd.Series(data, index)

data = [407.9979 ,  403.4608,  413.8249,  428.105 ,  445.3387,  452.9942, 455.7402]
index= pd.date_range(start='2001', end='2008', freq='A')
livestock3 = pd.Series(data, index)

data = [41.7275,  24.0418,  32.3281,  37.3287,  46.2132,  29.3463, 36.4829,  42.9777,  48.9015,  31.1802,  37.7179,  40.4202, 51.2069,  31.8872,  40.9783,  43.7725,  55.5586,  33.8509, 42.0764,  45.6423,  59.7668,  35.1919,  44.3197,  47.9137]
index= pd.date_range(start='2005', end='2010-Q4', freq='QS-OCT')
aust = pd.Series(data, index)

Simple Exponential Smoothing

Lets use Simple Exponential Smoothing to forecast the below oil data.

[2]:
ax=oildata.plot()
ax.set_xlabel("Year")
ax.set_ylabel("Oil (millions of tonnes)")
print("Figure 7.1: Oil production in Saudi Arabia from 1996 to 2007.")
Figure 7.1: Oil production in Saudi Arabia from 1996 to 2007.
../../../_images/examples_notebooks_generated_exponential_smoothing_4_1.png

Here we run three variants of simple exponential smoothing: 1. In fit1 we do not use the auto optimization but instead choose to explicitly provide the model with the \(\alpha=0.2\) parameter 2. In fit2 as above we choose an \(\alpha=0.6\) 3. In fit3 we allow statsmodels to automatically find an optimized \(\alpha\) value for us. This is the recommended approach.

[3]:
fit1 = SimpleExpSmoothing(oildata, initialization_method="heuristic").fit(smoothing_level=0.2,optimized=False)
fcast1 = fit1.forecast(3).rename(r'$\alpha=0.2$')
fit2 = SimpleExpSmoothing(oildata, initialization_method="heuristic").fit(smoothing_level=0.6,optimized=False)
fcast2 = fit2.forecast(3).rename(r'$\alpha=0.6$')
fit3 = SimpleExpSmoothing(oildata, initialization_method="estimated").fit()
fcast3 = fit3.forecast(3).rename(r'$\alpha=%s$'%fit3.model.params['smoothing_level'])

plt.figure(figsize=(12, 8))
plt.plot(oildata, marker='o', color='black')
plt.plot(fit1.fittedvalues, marker='o', color='blue')
line1, = plt.plot(fcast1, marker='o', color='blue')
plt.plot(fit2.fittedvalues, marker='o', color='red')
line2, = plt.plot(fcast2, marker='o', color='red')
plt.plot(fit3.fittedvalues, marker='o', color='green')
line3, = plt.plot(fcast3, marker='o', color='green')
plt.legend([line1, line2, line3], [fcast1.name, fcast2.name, fcast3.name])
[3]:
<matplotlib.legend.Legend at 0x7fce6512d850>
../../../_images/examples_notebooks_generated_exponential_smoothing_6_1.png

Holt’s Method

Lets take a look at another example. This time we use air pollution data and the Holt’s Method. We will fit three examples again. 1. In fit1 we again choose not to use the optimizer and provide explicit values for \(\alpha=0.8\) and \(\beta=0.2\) 2. In fit2 we do the same as in fit1 but choose to use an exponential model rather than a Holt’s additive model. 3. In fit3 we used a damped versions of the Holt’s additive model but allow the dampening parameter \(\phi\) to be optimized while fixing the values for \(\alpha=0.8\) and \(\beta=0.2\)

[4]:
fit1 = Holt(air, initialization_method="estimated").fit(smoothing_level=0.8, smoothing_trend=0.2, optimized=False)
fcast1 = fit1.forecast(5).rename("Holt's linear trend")
fit2 = Holt(air, exponential=True, initialization_method="estimated").fit(smoothing_level=0.8, smoothing_trend=0.2, optimized=False)
fcast2 = fit2.forecast(5).rename("Exponential trend")
fit3 = Holt(air, damped_trend=True, initialization_method="estimated").fit(smoothing_level=0.8, smoothing_trend=0.2)
fcast3 = fit3.forecast(5).rename("Additive damped trend")

plt.figure(figsize=(12, 8))
plt.plot(air, marker='o', color='black')
plt.plot(fit1.fittedvalues, color='blue')
line1, = plt.plot(fcast1, marker='o', color='blue')
plt.plot(fit2.fittedvalues, color='red')
line2, = plt.plot(fcast2, marker='o', color='red')
plt.plot(fit3.fittedvalues, color='green')
line3, = plt.plot(fcast3, marker='o', color='green')
plt.legend([line1, line2, line3], [fcast1.name, fcast2.name, fcast3.name])
[4]:
<matplotlib.legend.Legend at 0x7fce64dcb550>
../../../_images/examples_notebooks_generated_exponential_smoothing_8_1.png

Seasonally adjusted data

Lets look at some seasonally adjusted livestock data. We fit five Holt’s models. The below table allows us to compare results when we use exponential versus additive and damped versus non-damped.

Note: fit4 does not allow the parameter \(\phi\) to be optimized by providing a fixed value of \(\phi=0.98\)

[5]:
fit1 = SimpleExpSmoothing(livestock2, initialization_method="estimated").fit()
fit2 = Holt(livestock2, initialization_method="estimated").fit()
fit3 = Holt(livestock2,exponential=True, initialization_method="estimated").fit()
fit4 = Holt(livestock2,damped_trend=True, initialization_method="estimated").fit(damping_trend=0.98)
fit5 = Holt(livestock2,exponential=True, damped_trend=True, initialization_method="estimated").fit()
params = ['smoothing_level', 'smoothing_trend', 'damping_trend', 'initial_level', 'initial_trend']
results=pd.DataFrame(index=[r"$\alpha$",r"$\beta$",r"$\phi$",r"$l_0$","$b_0$","SSE"] ,columns=['SES', "Holt's","Exponential", "Additive", "Multiplicative"])
results["SES"] =            [fit1.params[p] for p in params] + [fit1.sse]
results["Holt's"] =         [fit2.params[p] for p in params] + [fit2.sse]
results["Exponential"] =    [fit3.params[p] for p in params] + [fit3.sse]
results["Additive"] =       [fit4.params[p] for p in params] + [fit4.sse]
results["Multiplicative"] = [fit5.params[p] for p in params] + [fit5.sse]
results
[5]:
SES Holt's Exponential Additive Multiplicative
$\alpha$ 1.000000 0.974306 9.776735e-01 0.978847 9.749160e-01
$\beta$ NaN 0.000000 1.354763e-09 0.000000 2.002597e-12
$\phi$ NaN NaN NaN 0.980000 9.816476e-01
$l_0$ 263.917696 258.880313 2.603423e+02 257.358020 2.589518e+02
$b_0$ NaN 5.010856 1.013780e+00 6.645937 1.038142e+00
SSE 6761.350235 6004.138205 6.104195e+03 6036.555040 6.081995e+03

Plots of Seasonally Adjusted Data

The following plots allow us to evaluate the level and slope/trend components of the above table’s fits.

[6]:
for fit in [fit2,fit4]:
    pd.DataFrame(np.c_[fit.level,fit.trend]).rename(
        columns={0:'level',1:'slope'}).plot(subplots=True)
plt.show()
print('Figure 7.4: Level and slope components for Holt’s linear trend method and the additive damped trend method.')
../../../_images/examples_notebooks_generated_exponential_smoothing_12_0.png
../../../_images/examples_notebooks_generated_exponential_smoothing_12_1.png
Figure 7.4: Level and slope components for Holt’s linear trend method and the additive damped trend method.

Comparison

Here we plot a comparison Simple Exponential Smoothing and Holt’s Methods for various additive, exponential and damped combinations. All of the models parameters will be optimized by statsmodels.

[7]:
fit1 = SimpleExpSmoothing(livestock2, initialization_method="estimated").fit()
fcast1 = fit1.forecast(9).rename("SES")
fit2 = Holt(livestock2, initialization_method="estimated").fit()
fcast2 = fit2.forecast(9).rename("Holt's")
fit3 = Holt(livestock2, exponential=True, initialization_method="estimated").fit()
fcast3 = fit3.forecast(9).rename("Exponential")
fit4 = Holt(livestock2, damped_trend=True, initialization_method="estimated").fit(damping_trend=0.98)
fcast4 = fit4.forecast(9).rename("Additive Damped")
fit5 = Holt(livestock2, exponential=True, damped_trend=True, initialization_method="estimated").fit()
fcast5 = fit5.forecast(9).rename("Multiplicative Damped")

ax = livestock2.plot(color="black", marker="o", figsize=(12,8))
livestock3.plot(ax=ax, color="black", marker="o", legend=False)
fcast1.plot(ax=ax, color='red', legend=True)
fcast2.plot(ax=ax, color='green', legend=True)
fcast3.plot(ax=ax, color='blue', legend=True)
fcast4.plot(ax=ax, color='cyan', legend=True)
fcast5.plot(ax=ax, color='magenta', legend=True)
ax.set_ylabel('Livestock, sheep in Asia (millions)')
plt.show()
print('Figure 7.5: Forecasting livestock, sheep in Asia: comparing forecasting performance of non-seasonal methods.')
../../../_images/examples_notebooks_generated_exponential_smoothing_14_0.png
Figure 7.5: Forecasting livestock, sheep in Asia: comparing forecasting performance of non-seasonal methods.

Holt’s Winters Seasonal

Finally we are able to run full Holt’s Winters Seasonal Exponential Smoothing including a trend component and a seasonal component. statsmodels allows for all the combinations including as shown in the examples below: 1. fit1 additive trend, additive seasonal of period season_length=4 and the use of a Box-Cox transformation. 1. fit2 additive trend, multiplicative seasonal of period season_length=4 and the use of a Box-Cox transformation.. 1. fit3 additive damped trend, additive seasonal of period season_length=4 and the use of a Box-Cox transformation. 1. fit4 additive damped trend, multiplicative seasonal of period season_length=4 and the use of a Box-Cox transformation.

The plot shows the results and forecast for fit1 and fit2. The table allows us to compare the results and parameterizations.

[8]:
fit1 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='add', use_boxcox=True, initialization_method="estimated").fit()
fit2 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='mul', use_boxcox=True, initialization_method="estimated").fit()
fit3 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='add', damped_trend=True, use_boxcox=True, initialization_method="estimated").fit()
fit4 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='mul', damped_trend=True, use_boxcox=True, initialization_method="estimated").fit()
results=pd.DataFrame(index=[r"$\alpha$",r"$\beta$",r"$\phi$",r"$\gamma$",r"$l_0$","$b_0$","SSE"])
params = ['smoothing_level', 'smoothing_trend', 'damping_trend', 'smoothing_seasonal', 'initial_level', 'initial_trend']
results["Additive"]       = [fit1.params[p] for p in params] + [fit1.sse]
results["Multiplicative"] = [fit2.params[p] for p in params] + [fit2.sse]
results["Additive Dam"]   = [fit3.params[p] for p in params] + [fit3.sse]
results["Multiplica Dam"] = [fit4.params[p] for p in params] + [fit4.sse]

ax = aust.plot(figsize=(10,6), marker='o', color='black', title="Forecasts from Holt-Winters' multiplicative method" )
ax.set_ylabel("International visitor night in Australia (millions)")
ax.set_xlabel("Year")
fit1.fittedvalues.plot(ax=ax, style='--', color='red')
fit2.fittedvalues.plot(ax=ax, style='--', color='green')

fit1.forecast(8).rename('Holt-Winters (add-add-seasonal)').plot(ax=ax, style='--', marker='o', color='red', legend=True)
fit2.forecast(8).rename('Holt-Winters (add-mul-seasonal)').plot(ax=ax, style='--', marker='o', color='green', legend=True)

plt.show()
print("Figure 7.6: Forecasting international visitor nights in Australia using Holt-Winters method with both additive and multiplicative seasonality.")

results
../../../_images/examples_notebooks_generated_exponential_smoothing_16_0.png
Figure 7.6: Forecasting international visitor nights in Australia using Holt-Winters method with both additive and multiplicative seasonality.
[8]:
Additive Multiplicative Additive Dam Multiplica Dam
$\alpha$ 1.490116e-08 1.490116e-08 1.490116e-08 1.490116e-08
$\beta$ 1.409868e-08 9.187435e-25 6.490801e-09 5.042503e-09
$\phi$ NaN NaN 9.430416e-01 9.536043e-01
$\gamma$ 0.000000e+00 7.815349e-16 7.006146e-17 2.169996e-16
$l_0$ 1.119347e+01 1.106375e+01 1.084021e+01 9.899269e+00
$b_0$ 1.205395e-01 1.198956e-01 2.456749e-01 1.975442e-01
SSE 4.402746e+01 3.611262e+01 3.527619e+01 3.062033e+01

The Internals

It is possible to get at the internals of the Exponential Smoothing models.

Here we show some tables that allow you to view side by side the original values \(y_t\), the level \(l_t\), the trend \(b_t\), the season \(s_t\) and the fitted values \(\hat{y}_t\). Note that these values only have meaningful values in the space of your original data if the fit is performed without a Box-Cox transformation.

[9]:
fit1 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='add', initialization_method="estimated").fit()
fit2 = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='mul', initialization_method="estimated").fit()
[10]:
df = pd.DataFrame(np.c_[aust, fit1.level, fit1.trend, fit1.season, fit1.fittedvalues],
                  columns=[r'$y_t$',r'$l_t$',r'$b_t$',r'$s_t$',r'$\hat{y}_t$'],index=aust.index)
df.append(fit1.forecast(8).rename(r'$\hat{y}_t$').to_frame(), sort=True)
[10]:
$\hat{y}_t$ $b_t$ $l_t$ $s_t$ $y_t$
2005-01-01 44.584128 0.597822 34.297565 10.286563 41.7275
2005-04-01 24.938189 0.597822 34.895387 -9.957198 24.0418
2005-07-01 33.005765 0.597822 35.493209 -2.487444 32.3281
2005-10-01 37.031106 0.597822 36.091031 0.940075 37.3287
2006-01-01 46.975416 0.597822 36.688853 10.286563 46.2132
2006-04-01 27.329477 0.597822 37.286675 -9.957198 29.3463
2006-07-01 35.397053 0.597822 37.884497 -2.487444 36.4829
2006-10-01 39.422394 0.597822 38.482319 0.940075 42.9777
2007-01-01 49.366704 0.597822 39.080141 10.286563 48.9015
2007-04-01 29.720765 0.597822 39.677963 -9.957198 31.1802
2007-07-01 37.788341 0.597822 40.275785 -2.487444 37.7179
2007-10-01 41.813682 0.597822 40.873607 0.940075 40.4202
2008-01-01 51.757992 0.597822 41.471429 10.286563 51.2069
2008-04-01 32.112053 0.597822 42.069251 -9.957198 31.8872
2008-07-01 40.179629 0.597822 42.667073 -2.487444 40.9783
2008-10-01 44.204970 0.597822 43.264895 0.940075 43.7725
2009-01-01 54.149280 0.597822 43.862717 10.286563 55.5586
2009-04-01 34.503341 0.597822 44.460539 -9.957198 33.8509
2009-07-01 42.570917 0.597822 45.058361 -2.487444 42.0764
2009-10-01 46.596258 0.597822 45.656183 0.940075 45.6423
2010-01-01 56.540568 0.597822 46.254005 10.286563 59.7668
2010-04-01 36.894629 0.597822 46.851827 -9.957198 35.1919
2010-07-01 44.962205 0.597822 47.449649 -2.487444 44.3197
2010-10-01 48.987546 0.597822 48.047471 0.940075 47.9137
2011-01-01 58.931856 NaN NaN NaN NaN
2011-04-01 39.285917 NaN NaN NaN NaN
2011-07-01 47.353493 NaN NaN NaN NaN
2011-10-01 51.378834 NaN NaN NaN NaN
2012-01-01 61.323143 NaN NaN NaN NaN
2012-04-01 41.677204 NaN NaN NaN NaN
2012-07-01 49.744781 NaN NaN NaN NaN
2012-10-01 53.770122 NaN NaN NaN NaN
[11]:
df = pd.DataFrame(np.c_[aust, fit2.level, fit2.trend, fit2.season, fit2.fittedvalues],
                  columns=[r'$y_t$',r'$l_t$',r'$b_t$',r'$s_t$',r'$\hat{y}_t$'],index=aust.index)
df.append(fit2.forecast(8).rename(r'$\hat{y}_t$').to_frame(), sort=True)
[11]:
$\hat{y}_t$ $b_t$ $l_t$ $s_t$ $y_t$
2005-01-01 43.005388 0.620937 35.016169 1.228158 41.7275
2005-04-01 26.352950 0.620937 35.637106 0.739481 24.0418
2005-07-01 33.284729 0.620937 36.258043 0.917996 32.3281
2005-10-01 36.719507 0.620937 36.878980 0.995676 37.3287
2006-01-01 46.055823 0.620937 37.499917 1.228158 46.2132
2006-04-01 28.189633 0.620937 38.120854 0.739481 29.3463
2006-07-01 35.564799 0.620937 38.741791 0.917996 36.4829
2006-10-01 39.192515 0.620937 39.362729 0.995676 42.9777
2007-01-01 49.106259 0.620937 39.983666 1.228158 48.9015
2007-04-01 30.026317 0.620937 40.604603 0.739481 31.1802
2007-07-01 37.844869 0.620937 41.225540 0.917996 37.7179
2007-10-01 41.665523 0.620937 41.846477 0.995676 40.4202
2008-01-01 52.156694 0.620937 42.467414 1.228158 51.2069
2008-04-01 31.863001 0.620937 43.088351 0.739481 31.8872
2008-07-01 40.124940 0.620937 43.709288 0.917996 40.9783
2008-10-01 44.138531 0.620937 44.330225 0.995676 43.7725
2009-01-01 55.207129 0.620937 44.951162 1.228158 55.5586
2009-04-01 33.699685 0.620937 45.572099 0.739481 33.8509
2009-07-01 42.405010 0.620937 46.193036 0.917996 42.0764
2009-10-01 46.611539 0.620937 46.813973 0.995676 45.6423
2010-01-01 58.257565 0.620937 47.434910 1.228158 59.7668
2010-04-01 35.536368 0.620937 48.055847 0.739481 35.1919
2010-07-01 44.685080 0.620937 48.676784 0.917996 44.3197
2010-10-01 49.084547 0.620937 49.297721 0.995676 47.9137
2011-01-01 61.308000 NaN NaN NaN NaN
2011-04-01 37.373052 NaN NaN NaN NaN
2011-07-01 46.965150 NaN NaN NaN NaN
2011-10-01 51.557555 NaN NaN NaN NaN
2012-01-01 64.358435 NaN NaN NaN NaN
2012-04-01 39.209736 NaN NaN NaN NaN
2012-07-01 49.245221 NaN NaN NaN NaN
2012-10-01 54.030563 NaN NaN NaN NaN

Finally lets look at the levels, slopes/trends and seasonal components of the models.

[12]:
states1 = pd.DataFrame(np.c_[fit1.level, fit1.trend, fit1.season], columns=['level','slope','seasonal'], index=aust.index)
states2 = pd.DataFrame(np.c_[fit2.level, fit2.trend, fit2.season], columns=['level','slope','seasonal'], index=aust.index)
fig, [[ax1, ax4],[ax2, ax5], [ax3, ax6]] = plt.subplots(3, 2, figsize=(12,8))
states1[['level']].plot(ax=ax1)
states1[['slope']].plot(ax=ax2)
states1[['seasonal']].plot(ax=ax3)
states2[['level']].plot(ax=ax4)
states2[['slope']].plot(ax=ax5)
states2[['seasonal']].plot(ax=ax6)
plt.show()
../../../_images/examples_notebooks_generated_exponential_smoothing_22_0.png

Simulations and Confidence Intervals

By using a state space formulation, we can perform simulations of future values. The mathematical details are described in Hyndman and Athanasopoulos [2] and in the documentation of HoltWintersResults.simulate.

Similar to the example in [2], we use the model with additive trend, multiplicative seasonality, and multiplicative error. We simulate up to 8 steps into the future, and perform 1000 simulations. As can be seen in the below figure, the simulations match the forecast values quite well.

[2] [Hyndman, Rob J., and George Athanasopoulos. Forecasting: principles and practice, 2nd edition. OTexts, 2018.](https://otexts.com/fpp2/ets.html)

[13]:
fit = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='mul', initialization_method="estimated").fit()
simulations = fit.simulate(8, repetitions=100, error='mul')

ax = aust.plot(figsize=(10,6), marker='o', color='black',
               title="Forecasts and simulations from Holt-Winters' multiplicative method" )
ax.set_ylabel("International visitor night in Australia (millions)")
ax.set_xlabel("Year")
fit.fittedvalues.plot(ax=ax, style='--', color='green')
simulations.plot(ax=ax, style='-', alpha=0.05, color='grey', legend=False)
fit.forecast(8).rename('Holt-Winters (add-mul-seasonal)').plot(ax=ax, style='--', marker='o', color='green', legend=True)
plt.show()
../../../_images/examples_notebooks_generated_exponential_smoothing_24_0.png

Simulations can also be started at different points in time, and there are multiple options for choosing the random noise.

[14]:
fit = ExponentialSmoothing(aust, seasonal_periods=4, trend='add', seasonal='mul', initialization_method="estimated").fit()
simulations = fit.simulate(16, anchor='2009-01-01', repetitions=100, error='mul', random_errors='bootstrap')

ax = aust.plot(figsize=(10,6), marker='o', color='black',
               title="Forecasts and simulations from Holt-Winters' multiplicative method" )
ax.set_ylabel("International visitor night in Australia (millions)")
ax.set_xlabel("Year")
fit.fittedvalues.plot(ax=ax, style='--', color='green')
simulations.plot(ax=ax, style='-', alpha=0.05, color='grey', legend=False)
fit.forecast(8).rename('Holt-Winters (add-mul-seasonal)').plot(ax=ax, style='--', marker='o', color='green', legend=True)
plt.show()
../../../_images/examples_notebooks_generated_exponential_smoothing_26_0.png