, exog_idx, fig=None)[source]

Plot regression results against one regressor.

This plots four graphs in a 2 by 2 figure: ‘endog versus exog’, ‘residuals versus exog’, ‘fitted versus exog’ and ‘fitted plus residual versus exog’

resultsresult instance

result instance with resid, model.endog and model.exog as attributes

exog_idxint or str

Name or index of regressor in exog matrix

figMatplotlib figure instance, optional

If given, this figure is simply returned. Otherwise a new figure is created.

figmatplotlib figure instance


Load the Statewide Crime data set and build a model with regressors including the rate of high school graduation (hs_grad), population in urban areas (urban), households below poverty line (poverty), and single person households (single). Outcome variable is the muder rate (murder).

Build a 2 by 2 figure based on poverty showing fitted versus actual murder rate, residuals versus the poverty rate, partial regression plot of poverty, and CCPR plot for poverty rate.

>>> import statsmodels.api as sm
>>> import matplotlib.pyplot as plot
>>> import statsmodels.formula.api as smf
>>> fig = plt.figure(figsize=(8, 6))
>>> crime_data = sm.datasets.statecrime.load_pandas()
>>> results = smf.ols('murder ~ hs_grad + urban + poverty + single',
>>>, 'poverty', fig=fig)

(Source code, png, hires.png, pdf)