statsmodels.distributions.copula.api.CopulaDistribution.rvs¶
-
CopulaDistribution.rvs(nobs=
1, cop_args=None, marg_args=None, random_state=None)[source]¶ Draw n in the half-open interval
[0, 1).Sample the joint distribution.
- Parameters:¶
- nobs : int, optional¶
Number of samples to generate in the parameter space. Default is 1.
- cop_args : tuple¶
Copula parameters. If None, then the copula parameters will be taken from the
cop_argsattribute created when initiializing the instance.- marg_args : list of tuples¶
Parameters for the marginal distributions. It can be None if none of the marginal distributions have parameters, otherwise it needs to be a list of tuples with the same length has the number of marginal distributions. The list can contain empty tuples for marginal distributions that do not take parameter arguments.
- random_state : {None, int, numpy.random.Generator}, optional¶
If seed is None then the legacy singleton NumPy generator. This will change after 0.13 to use a fresh NumPy
Generator, so you should explicitly pass a seededGeneratorif you need reproducible results. If seed is an int, a newGeneratorinstance is used, seeded with seed. If seed is already aGeneratorinstance then that instance is used.
- Returns:¶
sample – Sample from the joint distribution.
- Return type:¶
array_like (n, d)
Notes
The random samples are generated by creating a sample with uniform margins from the copula, and using
ppfto convert uniform margins to the one specified by the marginal distribution.