statsmodels.tsa.ar_model.AutoRegResults¶
-
class statsmodels.tsa.ar_model.AutoRegResults(model, params, cov_params, normalized_cov_params=
None, scale=1.0, use_t=False, summary_text='')[source]¶ Class to hold results from fitting an AutoReg model.
- Parameters:¶
- model : AutoReg¶
Reference to the model that is fit.
- params : ndarray¶
The fitted parameters from the AR Model.
- cov_params : ndarray¶
The estimated covariance matrix of the model parameters.
- normalized_cov_params : ndarray¶
The array inv(dot(x.T,x)) where x contains the regressors in the model.
- scale : float, optional¶
An estimate of the scale of the model.
- use_t : bool, optional¶
Whether use_t was set in fit
- summary_text : str, optional¶
Additional text to append to results summary
Methods
append(endog[, exog, refit, fit_kwargs])Append observations to the ones used to fit the model
apply(endog[, exog, refit, fit_kwargs])Apply the fitted parameters to new data unrelated to the original data
conf_int([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params([r_matrix, column, scale, cov_p, ...])Compute the variance/covariance matrix.
Returns a summary containing standard model diagnostic tests
f_test(r_matrix[, cov_p, invcov])Compute the F-test for a joint linear hypothesis.
forecast([steps, exog])Out-of-sample forecasts
get_prediction([start, end, dynamic, exog, ...])Predictions and prediction intervals
initialize(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load(fname)Load a pickled results instance
See specific model class docstring
plot_diagnostics([lags, fig, figsize])Diagnostic plots for standardized residuals
plot_predict([start, end, dynamic, exog, ...])Plot in- and out-of-sample predictions
predict([start, end, dynamic, exog, exog_oos])In-sample prediction and out-of-sample forecasting.
Remove data arrays, all nobs arrays from result and model.
save(fname[, remove_data])Save a pickle of this instance.
scale()sigma2()summary([alpha])Summarize the Model
t_test(r_matrix[, cov_p, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise(term_name[, method, alpha, ...])Perform pairwise t_test with multiple testing corrected p-values.
test_heteroskedasticity([lags])ARCH-LM test of residual heteroskedasticity
Test for normality of standardized residuals.
test_serial_correlation([lags, model_df])Ljung-Box test for residual serial correlation
wald_test(r_matrix[, cov_p, invcov, use_f, ...])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns.
Properties
Akaike Information Criterion using Lutkepohl's definition.
Akaike Information Criterion with small sample correction
The autoregressive lags included in the model
Returns the frequency of the AR roots.
Bayes Information Criterion
The standard errors of the estimated parameters.
The degrees of freedom consumed by the model.
The remaining degrees of freedom in the residuals.
The in-sample predicted values of the fitted AR model.
Final prediction error using Lütkepohl's definition.
Hannan-Quinn Information Criterion using Lutkepohl's definition.
Log-likelihood of model
The number of observations after adjusting for losses due to lags.
The estimated parameters.
The two-tailed p values for the t-stats of the params.
The residuals of the model.
The roots of the AR process.
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student's distribution in inference.